English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo.

Agam, K., von Campenhausen M, Levy S, Ben-Ami HC, Cook B, Kirschfeld, K., & Minke, B. (2000). Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo. Journal of Neuroscience, 20, 5748-5755.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-E5AD-A Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-E5AE-8
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Agam, K, Author
von Campenhausen M, Levy S, Ben-Ami HC, Cook B, Kirschfeld, K1, Author              
Minke, B, Author
Affiliations:
1Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497800              

Content

show
hide
Free keywords: -
 Abstract: Drosophila transient receptor potential (TRP) is a prototypical member of a novel family of channel proteins underlying phosphoinositide-mediated Ca2+ entry. Although the initial stages of this signaling cascade are well known, downstream events leading to the opening of the TRP channels are still obscure. In the present study we applied patch-clamp whole-cell recordings and measurements of Ca2+ concentration by ion- selective microelectrodes in eyes of normal and mutant Drosophila to isolate the TRP and TRP-like (TRPL)-dependent currents. We report that anoxia rapidly and reversibly depolarizes the photoreceptors and induces Ca2+ influx into these cells in the dark. We further show that openings of the light-sensitive channels, which mediate these effects, can be obtained by mitochondrial uncouplers or by depletion of ATP in photoreceptor cells, whereas the effects of illumination and all forms of metabolic stress were additive. Effects similar to those found in wild-type flies were also found in mutants with strong defects in rhodopsin, Gq-protein, or phospholipase C, thus indicating that the metabolic stress operates at a late stage of the phototransduction cascade. Genetic elimination of both TRP and TRPL channels prevented the effects of anoxia, mitochondrial uncouplers, and depletion of ATP, thus demonstrating that the TRP and TRPL channels are specific targets of metabolic stress. These results shed new light on the properties of the TRP and TRPL channels by showing that a constitutive ATP-dependent process is required to keep these channels closed in the dark, a requirement that would make them sensitive to metabolic stress.

Details

show
hide
Language(s):
 Dates: 2000
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: 71
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Neuroscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 20 Sequence Number: - Start / End Page: 5748 - 5755 Identifier: -