English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The Kernel Trick for Distances

Schölkopf, B.(2000). The Kernel Trick for Distances (MSR-TR-2000-51). Redmond, WA, USA: Microsoft Research, Microsoft Corporation.

Item is

Files

show Files
hide Files
:
tr-2000-51_1839.pdf (Any fulltext), 443KB
Name:
tr-2000-51_1839.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Schölkopf, B1, Author              
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: A method is described which, like the kernel trick in support vector machines (SVMs), lets us generalize distance-based algorithms to operate in feature spaces, usually nonlinearly related to the input space. This is done by identifying a class of kernels which can be represented as normbased distances in Hilbert spaces. It turns out that common kernel algorithms, such as SVMs and kernel PCA, are actually really distance based algorithms and can be run with that class of kernels, too. As well as providing a useful new insight into how these algorithms work, the present work can form the basis for conceiving new algorithms.

Details

show
hide
Language(s):
 Dates: 2000-05
 Publication Status: Published in print
 Pages: 9
 Publishing info: Redmond, WA, USA : Microsoft Research, Microsoft Corporation
 Table of Contents: -
 Rev. Type: -
 Identifiers: Report Nr.: MSR-TR-2000-51
BibTex Citekey: 1839
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show