ausblenden:
Schlagwörter:
-
Zusammenfassung:
The visual brain consists of several parallel, functionally specialized processing systems, each having several stages (nodes) which terminate their tasks at different times; consequently, simultaneously presented attributes are perceived at the same time if processed at the same node and at different times if processed by different nodes. Clinical evidence shows that these processing systems can act fairly autonomously. Damage restricted to one system compromises specifically the perception of the attribute that that system is specialized for; damage to a given node of a processing system that leaves earlier nodes intact results in a degraded perceptual capacity for the relevant attribute, which is directly related to the physiological capacities of the cells left intact by the damage. By contrast, a system that is spared when all others are damaged can function more or less normally. Moreover, internally created visual percepts—illusions, afterimages, imagery, and hallucinations—activate specifically the nodes specialized for the attribute perceived. Finally, anatomical evidence shows that there is no final integrator station in the brain, one which receives input from all visual areas; instead, each node has multiple outputs and no node is recipient only. Taken together, the above evidence leads us to propose that each node of a processing-perceptual system creates its own microconsciousness. We propose that, if any binding occurs to give us our integrated image of the visual world, it must be a binding between microconsciousnesses generated at different nodes. Since any two microconsciousnesses generated at any two nodes can be bound together, perceptual integration is not hierarchical, but parallel and postconscious. By contrast, the neural machinery conferring properties on those cells whose activity has a conscious correlate is hierarchical, and we refer to it as generative binding, to distinguish it from the binding that might occur between the microconsciousnesses.