English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Timing accuracy in motion extrapolation: Reversed effects of spatial properties at low and high velocities

Sokolov, A., Pavlova, M., & Ehrenstein, E. (1998). Timing accuracy in motion extrapolation: Reversed effects of spatial properties at low and high velocities. Poster presented at 21st European Conference on Visual Perception (ECVP 1998), Oxford, UK.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Sokolov, AN, Author           
Pavlova, MA1, 2, Author           
Ehrenstein, EH, Author
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: We extended and reanalysed our recent data on motion extrapolation (Sokolov et al, 1997 Perception 26 875 - 889) to examine the timing accuracy as a function of target size, speed, and visible motion path. A target (horizontal pair of dots separated by either 0.2 deg--small, or 0.8 deg--large) moved at a constant speed of either 2.5, 5, or 10 deg s-1 across a horizontal path (2.5 deg--short, or 10 deg--long) and then vanished. Observers pressed a key when they judged that the leading dot of the occluded target had reached one of seven randomly presented positions between 0 and 12 deg. Similar to earlier findings (eg Yakimoff et al, 1993 Human Factors 35 501 - 510), mean extrapolation response time was found to exceed the arrival time. With long visible paths, the timing accuracy (as indicated by absolute error) was better for moderate and high than for low velocities. This difference increased with increasing extrapolation interval owing to a progressive loss of accuracy for low velocities. However, with short paths, performance was much more accurate for the low than for the moderate velocities even across long extrapolation intervals. The magnitude of errors increased as intervals got longer, with a markedly steeper increase for moderate speeds. Similar effects as those with the short path were also found with different-sized targets; they were stronger for large than for small targets. The findings suggest that the visual system implements different scaling algorithms for motion perception and extrapolation of different-sized stimuli depending on target speed. At higher speeds, processing of visible and occluded motion is likely to share a common scaling mechanism.

Details

show
hide
Language(s):
 Dates: 1998-08
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: SokolovPE1998
DOI: 10.1177/03010066980270S101
 Degree: -

Event

show
hide
Title: 21st European Conference on Visual Perception (ECVP 1998)
Place of Event: Oxford, UK
Start-/End Date: 1998-08-24 - 1998-08-28

Legal Case

show

Project information

show

Source 1

show
hide
Title: Perception
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Pion Ltd.
Pages: - Volume / Issue: 27 (ECVP Abstract Supplement) Sequence Number: - Start / End Page: 196 - 197 Identifier: ISSN: 0301-0066
CoNE: https://pure.mpg.de/cone/journals/resource/954925509369