English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Learning View Graphs for Robot Navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., & Bülthoff, H.(1996). Learning View Graphs for Robot Navigation (33). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-EB5C-1 Version Permalink: http://hdl.handle.net/21.11116/0000-0002-938E-8
Genre: Report

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Franz, M1, 2, Author              
Schölkopf, B1, 2, Author              
Georg, P1, 2, Author              
Mallot, HA1, 2, Author              
Bülthoff, HH1, 2, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

Details

show
hide
Language(s):
 Dates: 1996-07
 Publication Status: Published in print
 Pages: -
 Publishing info: Tübingen, Germany : Max Planck Institute for Biological Cybernetics
 Table of Contents: -
 Rev. Type: -
 Identifiers: Report Nr.: 33
BibTex Citekey: 1497
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Technical Report of the Max Planck Institute for Biological Cybernetics
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 33 Sequence Number: - Start / End Page: - Identifier: -