English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Gaussian Processes for Regression

Williams, C., & Rasmussen, C. (1996). Gaussian Processes for Regression. In D. Touretzky, M. Mozer, & M. hasselmo (Eds.), Advances in Neural Processing Systems 8 (pp. 514-520). Cambridge, MA, USA: MIT Press.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Williams, CKI, Author
Rasmussen, CE1, Author           
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior over functions. We investigate the use of a Gaussian process prior over functions, which permits the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

Details

show
hide
Language(s):
 Dates: 1996-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 2468
 Degree: -

Event

show
hide
Title: Ninth Annual Conference on Neural Information Processing Systems (NIPS 1995)
Place of Event: Denver, CO, USA
Start-/End Date: 1995-11-27 - 1995-12-02

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Processing Systems 8
Source Genre: Proceedings
 Creator(s):
Touretzky , DS, Editor
Mozer, MC, Editor
hasselmo, ME, Editor
Affiliations:
-
Publ. Info: Cambridge, MA, USA : MIT Press
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 514 - 520 Identifier: ISBN: 0-262-20107-0