English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Using Neuropharmacology to Distinguish between Excitatory and Inhibitory Movement Detection Mechanisms in the Fly Calliphora erythrocephala

Schmid, A., & Bülthoff, H. (1988). Using Neuropharmacology to Distinguish between Excitatory and Inhibitory Movement Detection Mechanisms in the Fly Calliphora erythrocephala. Biological Cybernetics, 59(2), 71-80. doi:10.1007/BF00317769.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-EF47-2 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-EF48-F
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Schmid, A, Author
Bülthoff, HH1, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Content

show
hide
Free keywords: -
 Abstract: By combining neuropharmacology and electrophysiology, we tried to determine whether the main neuronal mechanism responsible for direction-selective motion detection in the fly is based on an excitatory or an inhibitory synaptic interaction. By blocking inhibitory interactions with picrotoxinin, an antagonist of the inhibitory neurotransmitter GABA, we could abolish most of the directional selectivity of a large-field movement-sensitive neuron (HI-cell) in the lobula plate of the blowfly Calliphora erythrocephala. These modifications are similar to changes observed in the optomotor response of the fruitfly Drosophila melanogaster after application of picrotoxinin (Bülthoff and Bülthoff l987a, b). Assuming a simplified logical model, these results are compatible with inhibitory synaptic interactions at the level of the elementary movement detectors. The picrotoxinin induced changes in direction selectivity are not due to modifications of the peripheral visual processing in the retina and lamina. This was show n by simultaneous recordings of the electroretinogram and the HI-cell. The latencies between drug injections into various parts of the brain and their first effects on the HI-cell suggest that the inhibitory mechanism for motion detection is located in the medulla rather than in the lobula plate.

Details

show
hide
Language(s):
 Dates: 1988-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biological Cybernetics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 59 (2) Sequence Number: - Start / End Page: 71 - 80 Identifier: -