English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly.

Reichardt, W. (1988). Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly. Biological Cybernetics, 58(5), 287-294. doi:10.1007/BF00363937.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-EF59-9 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-EF5A-7
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Reichardt, W1, Author              
Affiliations:
1Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497801              

Content

show
hide
Free keywords: -
 Abstract: The performance of the fly‘s movement detection system is analysed using the visually induced yaw torque generated during tethered flight as a behavioural indicator. In earlier studies usually large parts of the visual field were exposed to the movement stimuli; the fly‘s response, therefore, represented the spatially pooled output signals of a large number of local movement detectors. Here we examined the responses of individual movement detectors. The stimulus pattern was presented to the fly via small vertical slits, thus, nearly avoiding spatial integration of local movement information along the horizontal axis of the eye. The stimulus consisted of a vertically oriented sine-wave grating which was moved with a constant velocity either clockwise or counterclockwise. In agreement with the theory of movement detectors of the correlation type, the time-course of the detector signal is modulated with the spatial phase of the stimulus pattern. It can even assume negative values for some time during the response cycle and thus signal the wrong direction of motion. By spatially integrating the response over sufficiently large arrays of movement detectors these response modulations disappear. Finally, one obtains a signal of the movement detection system which is constant while the pattern moves in one direction and only changes its sign when the pattern reverses its direction of motion. Spatial integration thus represents a simple means to obtain a meaningful representations of motion information.

Details

show
hide
Language(s):
 Dates: 1988-04
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biological Cybernetics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 58 (5) Sequence Number: - Start / End Page: 287 - 294 Identifier: -