English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig

Hengstenberg, R. (1988). Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. Journal of Comparative Physiology A, 163(2), 151-165. doi:10.1007/BF00612425.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-EF61-6 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-EF62-4
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hengstenberg, R1, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Content

show
hide
Free keywords: -
 Abstract: In the blowflyCalliphora flying stationarily in a wind tunnel, compensatory head movements were elicited by rolling the fly about its longitudinal axis (Fig. 1). Responses were recorded on video tape, and evaluated by single frame analysis. Active head movements were observed in response to visual and mechanosensory stimuli (Fig. 2). They are not made or caused by the head's inertial momentum (Fig. 11). Gravity, used by walking flies to align their head with the vertical, does not seem to be perceived during flight (Figs. 3–6) but has a passive stabilizing effect upon the flight attitude (Fig. 7). A difference in aerodynamical load of the two wings elicits a transient head roll partly compensating a banked attitude (Figs. 4–6). The majority of campaniform sensilla at the wing base seems suitable to measure wing load. Steady roll motion elicits a steady compensatory head roll which does not vanish even after 8 min of rotation at constant angular velocity (Fig. 8). Roll motion is most efficient at high roll speeds (100‡/s<w<2000‡/s). Mechanical motion perception fails if both halteres are disabled by arresting their oscillation or by amputation of the haltere knobs (Fig. 11). Flies with only one haltere intact cannot distinguish pitch from roll, but with respect to the sense of rotation they still respond bidirectionally (Fig. 12). Haltere dynamics and the response characteristics of haltere sensilla are discussed on the basis of recent results. Head/body coordination is demonstrated in the absence of any roll stimulus (Fig. 3 a). The role of resilience of the neck skeleton, and that of different neck sense organs are discussed. Mechanosensory roll control inCalliphora depends upon the locomotor state: When walking, the fly aligns its head vertically by gravity perception (Horn 1982). When flying, it controls only fast rotations. Passive attitude stabilization and visual means of control are required to maintain an upright flight attitude and head orientation.

Details

show
hide
Language(s):
 Dates: 1988-03
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Comparative Physiology A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 163 (2) Sequence Number: - Start / End Page: 151 - 165 Identifier: -