Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Validation and functional annotation of expression-based clusters based on gene ontology

Steuer, R., Humburg, P., & Selbig, J. (2006). Validation and functional annotation of expression-based clusters based on gene ontology. BMC Bioinformatics, 7, 380. doi:10.1186/1471-2105-7-380.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0014-29B8-7 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0014-29B9-5
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Steuer-2006-Validation and funct.pdf (beliebiger Volltext), 341KB
Name:
Steuer-2006-Validation and funct.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Steuer, R.1, Autor
Humburg, P.1, Autor
Selbig, J.2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753315              

Inhalt

einblenden:
ausblenden:
Schlagwörter: saccharomyces-cerevisiae cell-cycle yeast information networks software
 Zusammenfassung: Background: The biological interpretation of large-scale gene expression data is one of the paramount challenges in current bioinformatics. In particular, placing the results in the context of other available functional genomics data, such as existing bio-ontologies, has already provided substantial improvement for detecting and categorizing genes of interest. One common approach is to look for functional annotations that are significantly enriched within a group or cluster of genes, as compared to a reference group. Results: In this work, we suggest the information-theoretic concept of mutual information to investigate the relationship between groups of genes, as given by data-driven clustering, and their respective functional categories. Drawing upon related approaches (Gibbons and Roth, Genome Research 12: 1574-1581, 2002), we seek to quantify to what extent individual attributes are sufficient to characterize a given group or cluster of genes. Conclusion: We show that the mutual information provides a systematic framework to assess the relationship between groups or clusters of genes and their functional annotations in a quantitative way. Within this framework, the mutual information allows us to address and incorporate several important issues, such as the interdependence of functional annotations and combinatorial combinations of attributes. It thus supplements and extends the conventional search for overrepresented attributes within a group or cluster of genes. In particular taking combinations of attributes into account, the mutual information opens the way to uncover specific functional descriptions of a group of genes or clustering result. All datasets and functional annotations used in this study are publicly available. All scripts used in the analysis are provided as additional files.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2006-08-152006
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: ISI:000240941600001
DOI: 10.1186/1471-2105-7-380
ISSN: 1471-2105 (Electronic) 1471-2105 (Linking)
URI: ://000240941600001 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1586215/pdf/1471-2105-7-380.pdf?tool=pmcentrez
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: BMC Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 7 Artikelnummer: - Start- / Endseite: 380 Identifikator: -