English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The dimension of $C^1$ splines of arbitrary degree on a tetrahedral partition

Hangelbroek, T., Nürnberger, G., Rössl, C., Seidel, H.-P., & Zeilfelder, F.(2003). The dimension of $C^1$ splines of arbitrary degree on a tetrahedral partition (MPI-I-2003-4-005). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
MPI-I-2003-4-005.pdf (Any fulltext), 550KB
Name:
MPI-I-2003-4-005.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Hangelbroek, Thomas1, Author              
Nürnberger, Günther2, Author
Rössl, Christian1, Author              
Seidel, Hans-Peter1, Author              
Zeilfelder, Frank1, Author              
Affiliations:
1Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We consider the linear space of piecewise polynomials in three variables which are globally smooth, i.e., trivariate $C^1$ splines. The splines are defined on a uniform tetrahedral partition $\Delta$, which is a natural generalization of the four-directional mesh. By using Bernstein-B{\´e}zier techniques, we establish formulae for the dimension of the $C^1$ splines of arbitrary degree.

Details

show
hide
Language(s): eng - English
 Dates: 2003
 Publication Status: Published in print
 Pages: 39 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2003-4-005
Report Nr.: MPI-I-2003-4-005
BibTex Citekey: HangelbroekNürnbergerRoesslSeidelZeilfelder2003
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -