English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Labelled modal logics: quantifiers

Basin, D. A., Matthews, S., & Viganò, L.(1997). Labelled modal logics: quantifiers (MPI-I-1997-2-001). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
MPI-I-97-2-001.pdf (Any fulltext), 350KB
Name:
MPI-I-97-2-001.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Basin, David A.1, Author           
Matthews, Seán1, Author           
Viganò, Luca1, Author           
Affiliations:
1Programming Logics, MPI for Informatics, Max Planck Society, ou_40045              

Content

show
hide
Free keywords: -
 Abstract: In previous work we gave an approach, based on labelled natural deduction, for formalizing proof systems for a large class of propositional modal logics, including K, D, T, B, S4, S4.2, KD45, and S5. Here we extend this approach to quantified modal logics, providing formalizations for logics with varying, increasing, decreasing, or constant domains. The result is modular both with respect to properties of the accessibility relation in the Kripke frame and the way domains of individuals change between worlds. Our approach has a modular metatheory too; soundness, completeness, and normalization are proved uniformly for every logic in our class. Finally, our work leads to a simple implementation of a modal logic theorem prover in standard logical frameworks.

Details

show
hide
Language(s): eng - English
 Dates: 1997
 Publication Status: Issued
 Pages: 31 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: Report Nr.: MPI-I-1997-2-001
BibTex Citekey: BasinMatthewsVigano97
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -