English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  New contact measures for the protein docking problem

Lenhof, H.-P.(1997). New contact measures for the protein docking problem (MPI-I-97-1-004). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
97-1-004.pdf (Any fulltext), 13MB
Name:
97-1-004.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Lenhof, Hans-Peter1, Author           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: -
 Abstract: We have developed and implemented a parallel distributed algorithm for the rigid-body protein docking problem. The algorithm is based on a new fitness function for evaluating the surface matching of a given conformation. The fitness function is defined as the weighted sum of two contact measures, the {\em geometric contact measure} and the {\em chemical contact measure}. The geometric contact measure measures the ``size'' of the contact area of two molecules. It is a potential function that counts the ``van der Waals contacts'' between the atoms of the two molecules (the algorithm does not compute the Lennard-Jones potential). The chemical contact measure is also based on the ``van der Waals contacts'' principle: We consider all atom pairs that have a ``van der Waals'' contact, but instead of adding a constant for each pair $(a,b)$ we add a ``chemical weight'' that depends on the atom pair $(a,b)$. We tested our docking algorithm with a test set that contains the test examples of Norel et al.~\cite{NLWN94} and \protect{Fischer} et al.~\cite{FLWN95} and compared the results of our docking algorithm with the results of Norel et al.~\cite{NLWN94,NLWN95}, with the results of Fischer et al.~\cite{FLWN95} and with the results of Meyer et al.~\cite{MWS96}. In 32 of 35 test examples the best conformation with respect to the fitness function was an approximation of the real conformation.

Details

show
hide
Language(s): eng - English
 Dates: 1997
 Publication Status: Issued
 Pages: 10 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: Report Nr.: MPI-I-97-1-004
BibTex Citekey: Lenhof97
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -