日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  New deterministic algorithms for counting pairs of intersecting segments and off-line triangle range searching

Pellegrini, M.(1995). New deterministic algorithms for counting pairs of intersecting segments and off-line triangle range searching (MPI-I-1995-1-022). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

基本情報

表示: 非表示:
資料種別: 報告書

ファイル

表示: ファイル
非表示: ファイル
:
MPI-I-95-1-022.pdf (全文テキスト(全般)), 43MB
ファイルのパーマリンク:
https://hdl.handle.net/11858/00-001M-0000-0023-E910-3
ファイル名:
MPI-I-95-1-022.pdf
説明:
-
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Pellegrini, M.1, 著者           
所属:
1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Max Planck Society, ou_1497673              

内容説明

表示:
非表示:
キーワード: -
 要旨: We describe a new method for decomposing planar sets of segments and points. Using this method we obtain new efficient {\em deterministic} algorithms for counting pairs of intersecting segments, and for answering off-line triangle range queries. In particular we obtain the following results: \noindent (1) Given $n$ segments in the plane, the number $K$ of pairs of intersecting segments is computed in time $O(n^{1+\epsilon} + K^{1/3}n^{2/3 + \epsilon})$, where $\epsilon >0$ an arbitrarily small constant. \noindent (2) Given $n$ segments in the plane which are coloured with two colours, the number of pairs of {\em bi-chromatic} intersecting segments is computed in time $O(n^{1+\epsilon} + K_m^{1/3}n^{2/3 +\epsilon})$, where $K_m$ is the number of {\em mono-chromatic} intersections, and $\epsilon >0$ is an arbitrarily small constant. \noindent (3) Given $n$ weighted points and $n$ triangles on a plane, the sum of weights of points in each triangle is computed in time $O(n^{1+\epsilon} + {\cal K}^{1/3}n^{2/3 +\epsilon})$, where ${\cal K}$ is the number of vertices in the arrangement of the triangles, and $\epsilon>0$ an arbitrarily small constant. The above bounds depend sub-linearly on the number of intersections among segments $K$ (resp. $K_m$, ${\cal K}$), which is desirable since $K$ (resp. $K_m$, ${\cal K}$) can range from zero to $O(n^2)$. All of the above algorithms use optimal $\Theta(n)$ storage. The constants of proportionality in the big-Oh notation increase as $\epsilon$ decreases. These results are based on properties of the sparse nets introduced by Chazelle.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 1995
 出版の状態: 出版
 ページ: 12 p.
 出版情報: Saarbrücken : Max-Planck-Institut für Informatik
 目次: -
 査読: -
 識別子(DOI, ISBNなど): URI: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1995-1-022
Reportnr.: MPI-I-1995-1-022
BibTex参照ID: Pellegrini95
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Research Report / Max-Planck-Institut für Informatik
種別: 連載記事
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -