English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Shortest paths in digraphs of small treewidth part II: optimal parallel algirithms

Chaudhuri, S., & Zaroliagis, C.(1995). Shortest paths in digraphs of small treewidth part II: optimal parallel algirithms (MPI-I-1995-1-021). Saarbrücken: Max-Planck-Institut für Informatik.

Item is

Files

show Files
hide Files
:
MPI-I-95-1-021.pdf (Any fulltext), 237KB
Name:
MPI-I-95-1-021.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Chaudhuri, Shiva1, Author           
Zaroliagis, Christos1, Author           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: -
 Abstract: We consider the problem of preprocessing an $n$-vertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give parallel algorithms for the EREW PRAM model of computation that depend on the {\em treewidth} of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in $O(\alpha(n))$ time using a single processor, after a preprocessing of $O(\log^2n)$ time and $O(n)$ work, where $\alpha(n)$ is the inverse of Ackermann's function. The class of constant treewidth graphs contains outerplanar graphs and series-parallel graphs, among others. To the best of our knowledge, these are the first parallel algorithms which achieve these bounds for any class of graphs except trees. We also give a dynamic algorithm which, after a change in an edge weight, updates our data structures in $O(\log n)$ time using $O(n^\beta)$ work, for any constant $0 < \beta < 1$. Moreover, we give an algorithm of independent interest: computing a shortest path tree, or finding a negative cycle in $O(\log^2 n)$ time using $O(n)$ work.

Details

show
hide
Language(s): eng - English
 Dates: 1995
 Publication Status: Issued
 Pages: 20 p.
 Publishing info: Saarbrücken : Max-Planck-Institut für Informatik
 Table of Contents: -
 Rev. Type: -
 Identifiers: URI: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1995-1-021
Report Nr.: MPI-I-1995-1-021
BibTex Citekey: ChaudhuriZaroliagis95b
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Research Report / Max-Planck-Institut für Informatik
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -