Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Adaptive thresholding for reliable topological inference in single subject fMRI analysis

Gorgolewski, K. J., Storkey, A. J., Bastin, M. E., & Pernet, C. R. (2012). Adaptive thresholding for reliable topological inference in single subject fMRI analysis. Frontiers in Human Neuroscience, 6: 245. doi:10.3389/fnhum.2012.00245.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Gorolewski_Storkey_2012.pdf (Verlagsversion), 3MB
Name:
Gorolewski_Storkey_2012.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gorgolewski, Krzysztof J.1, 2, Autor           
Storkey, Amos J.1, Autor
Bastin, Mark E.2, 3, Autor
Pernet, Cyril R.2, Autor
Affiliations:
1School of Informatics, University of Edinburgh, United Kingdom, ou_persistent22              
2Brain Research Imaging Centre, University of Edinburgh, United Kingdom, ou_persistent22              
3School of Healthcare Science, University of Edinburgh, United Kingdom, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Mixture models; Random field theory; False negative errors; Spatial accuracy; Reliability
 Zusammenfassung: Single subject fMRI has proved to be a useful tool for mapping functional areas in clinical procedures such as tumor resection. Using fMRI data, clinicians assess the risk, plan and execute such procedures based on thresholded statistical maps. However, because current thresholding methods were developed mainly in the context of cognitive neuroscience group studies, most single subject fMRI maps are thresholded manually to satisfy specific criteria related to single subject analyzes. Here, we propose a new adaptive thresholding method which combines Gamma-Gaussian mixture modeling with topological thresholding to improve cluster delineation. In a series of simulations we show that by adapting to the signal and noise properties, the new method performs well in terms of total number of errors but also in terms of the trade-off between false negative and positive cluster error rates. Similarly, simulations show that adaptive thresholding performs better than fixed thresholding in terms of over and underestimation of the true activation border (i.e., higher spatial accuracy). Finally, through simulations and a motor test–retest study on 10 volunteer subjects, we show that adaptive thresholding improves reliability, mainly by accounting for the global signal variance. This in turn increases the likelihood that the true activation pattern can be determined offering an automatic yet flexible way to threshold single subject fMRI maps.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-03-122012-08-062012-08-25
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: PMC: 3427544
PMID: 22936908
DOI: 10.3389/fnhum.2012.00245
Anderer: eCollection 2012
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Human Neuroscience
  Kurztitel : Front Hum Neurosci
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lausanne, Switzerland : Frontiers Research Foundation
Seiten: - Band / Heft: 6 Artikelnummer: 245 Start- / Endseite: - Identifikator: ISSN: 1662-5161
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5161