Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene

Kim, K. S., Walter, A. L., Moreschini, L., Seyller, T., Horn, K., Rotenberg, E., et al. (2013). Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nature Materials, 12(10), 887-892. doi:10.1038/nmat3717.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Text_tw.pdf (beliebiger Volltext), 11MB
Name:
Text_tw.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2013
Copyright Info:
NPG
Lizenz:
-
:
1840540.pdf (Verlagsvertrag), 118KB
 
Datei-Permalink:
-
Name:
1840540.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kim, Keun Su1, 2, Autor           
Walter, Andrew L.3, Autor
Moreschini, Luca2, Autor
Seyller, Thomas4, Autor
Horn, Karsten1, Autor           
Rotenberg, Eli2, Autor
Bostwick, Aaron2, Autor
Affiliations:
1Molecular Physics, Fritz Haber Institute, Max Planck Society, ou_634545              
2Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA, ou_persistent22              
3Donostia International Physics Centre, Manuel Lardizábal 4, E-20018 San Sebastián, Spain, ou_persistent22              
4Institut für Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Charge carriers in bilayer graphene are widely believed to be massive Dirac fermions that have a bandgap tunable by a transverse electric field. However, a full transport gap, despite its importance for device applications, has not been clearly observed in gated bilayer graphene, a long-standing puzzle. Moreover, the low-energy electronic structure of bilayer graphene is widely held to be unstable towards symmetry breaking either by structural distortions, such as twist, strain, or electronic interactions that can lead to various ground states. Which effect dominates the physics at low energies is hotly debated. Here we show both by direct band-structure measurements and by calculations that a native imperfection of bilayer graphene, a distribution of twists whose size is as small as ~0.1°, is sufficient to generate a completely new electronic spectrum consisting of massive and massless Dirac fermions. The massless spectrum is robust against strong electric fields, and has a unusual topology in momentum space consisting of closed arcs having an exotic chiral pseudospin texture, which can be tuned by varying the charge density. The discovery of this unusual Dirac spectrum not only complements the framework of massive Dirac fermions, widely relevant to charge transport in bilayer graphene, but also supports the possibility of valley Hall transport.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012-12-122013-06-202013-07-282013-10
 Publikationsstatus: Erschienen
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/nmat3717
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Materials
  Andere : Nat. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Pub. Group
Seiten: - Band / Heft: 12 (10) Artikelnummer: - Start- / Endseite: 887 - 892 Identifikator: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000