English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Photodynamics of Schiff Base Salicylideneaniline: Trajectory Surface-Hopping Simulations

Spörkel, L., Cui, G., & Thiel, W. (2013). Photodynamics of Schiff Base Salicylideneaniline: Trajectory Surface-Hopping Simulations. The Journal of Physical Chemistry A, 117(22), 4574-4583. doi:10.1021/jp4028035.

Item is

Files

show Files
hide Files
:
jp4028035_si_001.pdf (Supplementary material), 648KB
Name:
jp4028035_si_001.pdf
Description:
Supporting Information
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Spörkel, Lasse1, Author           
Cui, Ganglong1, Author           
Thiel, Walter1, Author           
Affiliations:
1Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              

Content

show
hide
Free keywords: Radiation Chemistry, Photochemistry, Photographic and Other Reprographic Processes
 Abstract: We report a computational study on the photochemistry of the prototypical aromatic Schiff base salicylideneaniline in the gas phase using static electronic structure calculations (TDDFT, OM2/MRCI) and surface-hopping dynamics simulations (OM2/MRCI). Upon photoexcitation of the most stable cis-enol tautomer into the bright S1 state, we find an ultrafast excited-state proton transfer that is complete within tens of femtoseconds, without any C═N double bond isomerization. The internal conversion of the resulting S1 cis-keto species is initiated by an out-of-plane motion around the C–C single bond, which guides the molecule toward a conical intersection that provides an efficient deactivation channel to the ground state. We propose that the ease of this C–C single bond rotation regulates fluorescence quenching and photocoloration in condensed-phase environments. In line with previous work, we find the S1 cis-keto conformer to be responsible for fluorescence, especially in rigid surroundings. The S0 cis-keto species is a transient photoproduct, while the stable S0 trans-keto photoproduct is responsible for photochromism. The trajectory calculations yield roughly equal amounts of the S0 cis-enol and trans-keto photoproducts. Methodologically, full-dimensional nonadiabatic dynamics simulations are found necessary to capture the preferences among competitive channels and to gain detailed mechanistic insight into Schiff base photochemistry.

Details

show
hide
Language(s): eng - English
 Dates: 2013-05-062013-03-212013-05-082013-06-06
 Publication Status: Issued
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/jp4028035
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physical Chemistry A
  Other : J. Phys. Chem. A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Columbus, OH : American Chemical Society
Pages: - Volume / Issue: 117 (22) Sequence Number: - Start / End Page: 4574 - 4583 Identifier: ISSN: 1089-5639
CoNE: https://pure.mpg.de/cone/journals/resource/954926947766_4