English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Interactions of the amphiphiles arbutin and tryptophan with phosphatidylcholine and phosphatidylethanolamine bilayers in the dry state

Popova, A. V., & Hincha, D. K. (2013). Interactions of the amphiphiles arbutin and tryptophan with phosphatidylcholine and phosphatidylethanolamine bilayers in the dry state. BMC BIOPHYSICS, 6(9). doi:10.1186/2046-1682-6-9.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0014-A565-C Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0018-C56D-1
Genre: Journal Article

Files

show Files
hide Files
:
2046-1682-6-9.pdf (Any fulltext), 760KB
Name:
2046-1682-6-9.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Popova, A. V.1, Author              
Hincha, D. K.1, Author              
Affiliations:
1Transcript Profiling, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753306              

Content

show
hide
Free keywords: -
 Abstract: Background: Water is essential for life, but some organisms can survive complete desiccation, while many more survive partial dehydration during drying or freezing. The function of some protective molecules, such as sugars, has been extensively studied, but much less is known about the effects of amphiphiles such as flavonoids and other aromatic compounds. Amphiphiles may be largely soluble under fully hydrated conditions, but will partition into membranes upon removal of water. Little is known about the effects of amphiphiles on membrane stability and how amphiphile structure and function are related. Here, we have used two of the most intensively studied amphiphiles, tryptophan (Trp) and arbutin (Arb), along with their isolated hydrophilic moieties glycine (Gly) and glucose (Glc) to better understand structure-function relationships in amphiphile-membrane interactions in the dry state. Results: Fourier-transform infrared (FTIR) spectroscopy was used to measure gel-to-liquid crystalline phase transition temperatures (T-m) of liposomes formed from phosphatidylcholine and phosphatidylethanolamine in the presence of the different additives. In anhydrous samples, both Glc and Arb strongly depressed T-m, independent of lipid composition, while Gly had no measurable effect. Trp, on the other hand, either depressed or increased T-m, depending on lipid composition. We found no evidence for strong interactions of any of the compounds with the lipid carbonyl or choline groups, while all additives except Gly seemed to interact with the phosphate groups. In the case of Arb and Glc, this also had a strong effect on the sugar OH vibrations in the FTIR spectra. In addition, vibrations from the hydrophobic indole and phenol moieties of Trp and Arb, respectively, provided evidence for interactions with the lipid bilayers. Conclusions: The two amphiphiles Arb and Trp interact differently with dry bilayers. The interactions of Arb are dominated by contributions of the Glc moiety, while the indole governs the effects of Trp. In addition, only Trp-membrane interactions showed a strong influence of lipid composition. Further investigations, using the large structural diversity of plant amphiphiles will help to understand how their structure determines the interaction with membranes and how that influences their biological functions, for example under freezing or dehydration conditions.

Details

show
hide
Language(s): eng - English
 Dates: 2013
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000322397200001
DOI: 10.1186/2046-1682-6-9
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: BMC BIOPHYSICS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 6 (9) Sequence Number: - Start / End Page: - Identifier: ISSN: 2046-1682