English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Knowledge Discovery on Incompatibility of Medical Concepts

Grycner, A., Ernst, P., Siu, A., & Weikum, G. (2013). Knowledge Discovery on Incompatibility of Medical Concepts. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 114-125). Berlin: Springer. doi:10.1007/978-3-642-37247-6_10.

Item is

Files

show Files
hide Files
:
Grycner13.pdf (Any fulltext), 284KB
 
File Permalink:
-
Name:
Grycner13.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
paper.pdf (Preprint), 338KB
 
File Permalink:
-
Name:
paper.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Grycner, Adam1, Author           
Ernst, Patrick1, Author
Siu, Amy1, Author           
Weikum, Gerhard1, Author           
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              

Content

show
hide
Free keywords: -
 Abstract: This work proposes a method for automatically discovering incompatible medical concepts in text corpora. The approach is distantly supervised based on a seed set of incompatible concept pairs like symptoms or conditions that rule each other out. Two concepts are considered incompatible if their definitions match a template, and contain an antonym pair derived from WordNet, VerbOcean, or a hand-crafted lexicon. Our method creates templates from dependency parse trees of definitional texts, using seed pairs. The templates are applied to a text corpus, and the resulting candidate pairs are categorized and ranked by statistical measures. Since experiments show that the results face semantic ambiguity problems, we further cluster the results into different categories. We applied this approach to the concepts in Unified Medical Language System, Human Phenotype Ontology, and Mammalian Phenotype Ontology. Out of 77,496 definitions, 1,958 concept pairs were detected as incompatible with an average precision of 0.80.

Details

show
hide
Language(s): eng - English
 Dates: 20132013
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Grycner2013
Other: Local-ID: 2C3D152169C55F01C1257B160035B6E6-Grycner2013
DOI: 10.1007/978-3-642-37247-6_10
 Degree: -

Event

show
hide
Title: 14th International Conference on Computational Linguistics and Intelligent Text Processing
Place of Event: Samos, Greece
Start-/End Date: 2013-03-24 - 2013-03-30

Legal Case

show

Project information

show

Source 1

show
hide
Title: Computational Linguistics and Intelligent Text Processing
  Abbreviation : CICLing 2013
  Subtitle : 14th International Conference, CICLing 2013 ; Samos, Greece, March 24-30, 2013 ; Proceedings, Part I
Source Genre: Proceedings
 Creator(s):
Gelbukh, Alexander1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: Berlin : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 114 - 125 Identifier: ISBN: 978-3-642-37246-9

Source 2

show
hide
Title: Lecture Notes in Computer Science
  Abbreviation : LNCS
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 7816 Sequence Number: - Start / End Page: - Identifier: -