English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Evidence for structural and electronic instabilities at intermediate temperatures in kappa-(BEDT-TTF)2X for X=Cu[N(CN)2]Cl, Cu[N(CN)2]Br and Cu(NCS)2: Implications for the phase diagram of these quasi-two-dimensional organic superconductors

Müller, J., Lang, M., Steglich, F., Schlueter, J. A., Kini, A. M., & Sasaki, T. (2002). Evidence for structural and electronic instabilities at intermediate temperatures in kappa-(BEDT-TTF)2X for X=Cu[N(CN)2]Cl, Cu[N(CN)2]Br and Cu(NCS)2: Implications for the phase diagram of these quasi-two-dimensional organic superconductors. Physical Review B, 65(14): 144521, pp. 144521-144521. doi:10.1103/PhysRevB.65.144521.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Müller, J.1, Author              
Lang, M.1, Author              
Steglich, F.2, Author              
Schlueter, J. A., Author
Kini, A. M., Author
Sasaki, T., Author
Affiliations:
1Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863404              
2Frank Steglich, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863467              

Content

show
hide
Free keywords: -
 Abstract: We present high-resolution measurements of the coefficient of thermal expansion alpha(T)=partial derivative ln l(T)/partial derivativeT of the quasi-two-dimensional (quasi-2D) salts kappa-(BEDT-TTF)(2)X with X=Cu(NCS)(2), Cu[N(CN)(2)]Br, and Cu[N(CN)(2)]Cl in the temperature range Tless than or equal to150 K. Three distinct kinds of anomalies corresponding to different temperature ranges have been identified. These are (A) phase-transition anomalies into the superconducting (X=Cu(NCS)(2), Cu[N(CN)(2)]Br) and antiferromagnetic (X=Cu[N(CN)(2)]Cl) ground state, (B) phase-transition-like anomalies at intermediate temperatures (30-50) K for the superconducting salts, and (C) kinetic, glasslike transitions at higher temperatures, i.e., (70-80) K for all compounds. By a thermodynamic analysis of the discontinuities at the second- order phase transitions that characterize the ground state of system (A), the uniaxial-pressure coefficients of the respective transition temperatures could be determined. We find that in contrast to what has been frequently assumed, the intraplane-pressure coefficients of T-c for this family of quasi-2D superconductors do not reveal a simple form of systematics. This demonstrates that attempts to model these systems by solely considering in-plane electronic parameters are not appropriate. At intermediate temperatures (B), distinct anomalies reminiscent of second-order phase transitions have been found at T-*=38 K and 45 K for the superconducting X=Cu(NCS)(2) and Cu[N(CN)(2)]Br salts, respectively. Most interestingly, we find that the signs of the uniaxial pressure coefficients of T-*, partial derivativeT(*)/partial derivativep(i) (i=a,b,c), are strictly anticorrelated with those of T-c. Based on comparative studies including the nonsuperconducting X=Cu[N(CN)(2)]Cl salt as well as isotopically labeled compounds, we propose that T-* marks the transition to a density-wave state forming on minor, quasi-1D parts of the Fermi surface. Our results are compatible with two competing order parameters that form on disjunct portions of the Fermi surface. At elevated temperatures (C), all compounds show alpha(T) anomalies that can be identified with a kinetic, glasslike transition where, below a characteristic temperature T-g, disorder in the orientational degrees of freedom of the terminal ethylene groups becomes frozen in. Our results provide a natural explanation for the unusual time- and cooling-rate dependences of the ground-state properties in the hydrogenated and deuterated Cu[N(CN)(2)]Br salts reported in the literature.

Details

show
hide
Language(s): eng - English
 Dates: 2002-04-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 17889
ISI: 000174980300127
DOI: 10.1103/PhysRevB.65.144521
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review B
  Alternative Title : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 65 (14) Sequence Number: 144521 Start / End Page: 144521 - 144521 Identifier: ISSN: 0163-1829