Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Membrane Binding of MinE Allows for a Comprehensive Description of Min-Protein Pattern Formation

Bonny, M., Fischer-Friedrich, E., Loose, M., Schwille, P., & Kruse, K. (2013). Membrane Binding of MinE Allows for a Comprehensive Description of Min-Protein Pattern Formation. PLoS Computational Biology, 9(12): e1003347. doi:10.1371/journal.pcbi.1003347.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
journal.pcbi.1003347.pdf (Verlagsversion), 3MB
Name:
journal.pcbi.1003347.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
open access article
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bonny, Mike1, Autor
Fischer-Friedrich, Elisabeth1, Autor
Loose, Martin1, Autor
Schwille, Petra2, Autor           
Kruse, Karsten1, Autor
Affiliations:
1external, ou_persistent22              
2Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              

Inhalt

einblenden:
ausblenden:
Schlagwörter: DIVISION SITE SELECTION; BACTERIAL-CELL DIVISION; SHAPED ESCHERICHIA-COLI; IN-VITRO; SELF-ORGANIZATION; POLE OSCILLATION; STOCHASTIC-MODEL; SURFACE-WAVES; RAPID POLE; DYNAMICS
 Zusammenfassung: The rod-shaped bacterium Escherichia coli selects the cell center as site of division with the help of the proteins MinC, MinD, and MinE. This protein system collectively oscillates between the two cell poles by alternately binding to the membrane in one of the two cell halves. This dynamic behavior, which emerges from the interaction of the ATPase MinD and its activator MinE on the cell membrane, has become a paradigm for protein self-organization. Recently, it has been found that not only the binding of MinD to the membrane, but also interactions of MinE with the membrane contribute to Min-protein self-organization. Here, we show that by accounting for this finding in a computational model, we can comprehensively describe all observed Min-protein patterns in vivo and in vitro. Furthermore, by varying the system's geometry, our computations predict patterns that have not yet been reported. We confirm these predictions experimentally.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-12
 Publikationsstatus: Online veröffentlicht
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000329364800008
DOI: 10.1371/journal.pcbi.1003347
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 9 (12) Artikelnummer: e1003347 Start- / Endseite: - Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1