English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  MC EMiNEM maps the interaction landscape of the Mediator

Niederberger, T., Etzold, S., Lidschreiber, M., Maier, K. C., Martin, D. E., Fröhlich, H., et al. (2012). MC EMiNEM maps the interaction landscape of the Mediator. PLoS Computational Biology, 8(6): e1002568. doi:10.1371/journal.pcbi.1002568.

Item is

Files

show Files
hide Files
:
1933059.pdf (Publisher version), 769KB
Name:
1933059.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
1933059-Suppl.zip (Supplementary material), 6MB
Name:
1933059-Suppl.zip
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/zip / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

show
hide
 Creators:
Niederberger, T., Author
Etzold, S., Author
Lidschreiber, M., Author
Maier, K. C., Author
Martin, D. E., Author
Fröhlich, H., Author
Cramer, P.1, Author           
Tresch, A., Author
Affiliations:
1Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1863498              

Content

show
hide
Free keywords: -
 Abstract: The Mediator is a highly conserved, large multiprotein complex that is involved essentially in the regulation of eukaryotic mRNA transcription. It acts as a general transcription factor by integrating regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The internal network of interactions between Mediator subunits that conveys these signals is largely unknown. Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies between proteins that have pleiotropic effects on mRNA transcription. MC EMiNEM is based on Nested Effects Models (NEMs), a class of probabilistic graphical models that extends the idea of hierarchical clustering. It combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM) algorithm for NEMs to increase sensitivity compared to existing methods. A meta-analysis of four Mediator perturbation studies in Saccharomyces cerevisiae, three of which are unpublished, provides new insight into the Mediator signaling network. In addition to the known modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering of its internal information flow, which is putatively transmitted through structural changes within the complex. We identify the N-terminus of Med7 as a peripheral entity, entailing only local structural changes upon perturbation, while the C-terminus of Med7 and Med19 appear to play a central role. MC EMiNEM associates Mediator subunits to most directly affected genes, which, in conjunction with gene set enrichment analysis, allows us to construct an interaction map of Mediator subunits and transcription factors.

Details

show
hide
Language(s): eng - English
 Dates: 2012-06-21
 Publication Status: Published online
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1371/journal.pcbi.1002568
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS Computational Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 8 (6) Sequence Number: e1002568 Start / End Page: - Identifier: -