English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Wind shear and buoyancy reversal at the stratocumulus top

Mellado, J.-P., Stevens, B., & Schmidt, H. (2014). Wind shear and buoyancy reversal at the stratocumulus top. Journal of the Atmospheric Sciences, 71, 1040-1057. doi:10.1175/JAS-D-13-0189.1.

Item is

Files

show Files
hide Files
:
jas-d-13-0189.1.pdf (Publisher version), 2MB
Name:
jas-d-13-0189.1.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Mellado, Juan-Pedro1, Author           
Stevens, Bjorn2, Author           
Schmidt, Heiko, Author
Affiliations:
1Max Planck Research Group Turbulent Mixing Processes in the Earth System, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913573              
2Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913570              

Content

show
hide
Free keywords: -
 Abstract: A numerical experiment is designed to study the interaction at the stratocumulus top between a mean vertical shear and the buoyancy reversal due to evaporative cooling, without radiative cooling. Direct numerical simulation is used to eliminate the uncertainty introduced by turbulence models. It is found that the enhancement by shear-induced mixing of the turbulence caused by buoyancy reversal can render buoyancy reversal comparable to other forcing mechanisms. However, it is also found that (i) the velocity jump across the capping inversion u needs to be relatively large and values of about 1 m s(-1) that are typically associated with the convective motions inside the boundary layer are generally too small and (ii) there is no indication of cloud-top entrainment instability. To obtain these results, parameterizations of the mean entrainment velocity and the relevant time scales are derived from the study of the cloud-top vertical structure. Two overlapping layers can be identified: a background shear layer with a thickness (1/3)(u)(2)/b, where b is the buoyancy increment across the capping inversion and a turbulence layer dominated by free convection inside the cloud and by shear production inside the relatively thin overlap region. As turbulence intensifies, the turbulence layer encroaches into the background shear layer and defines thereby the entrainment velocity. Particularized to the first research flight of the Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS II) field campaign, the analysis predicts an entrainment velocity of about 3 mm s(-1) after 5-10 mina velocity comparable to the measurements and thus indicative of the relevance of mean shear in that case.

Details

show
hide
Language(s): eng - English
 Dates: 20142014-032014-03
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1175/JAS-D-13-0189.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the Atmospheric Sciences
  Abbreviation : J. Atmos. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Meteorological Society
Pages: - Volume / Issue: 71 Sequence Number: - Start / End Page: 1040 - 1057 Identifier: ISSN: 0022-4928
CoNE: https://pure.mpg.de/cone/journals/resource/954925418030