English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Structural basis of RNA polymerase II backtracking, arrest and reactivation

Cheung, A. C. M., & Cramer, P. (2011). Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature, 471(7337), 249-253. doi:10.1038/nature09785.

Item is

Files

show Files
hide Files
:
1937845.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
1937845.pdf
Description:
-
OA-Status:
Visibility:
Restricted (UNKNOWN id 303; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
1937845-Suppl.pdf (Supplementary material), 524KB
Name:
1937845-Suppl.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Cheung, A. C. M., Author
Cramer, P.1, Author           
Affiliations:
1Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1863498              

Content

show
hide
Free keywords: Structural biology Molecular biology
 Abstract: During gene transcription, RNA polymerase (Pol) II moves forwards along DNA and synthesizes messenger RNA. However, at certain DNA sequences, Pol II moves backwards, and such backtracking can arrest transcription. Arrested Pol II is reactivated by transcription factor IIS (TFIIS), which induces RNA cleavage that is required for cell viability1. Pol II arrest and reactivation are involved in transcription through nucleosomes2, 3 and in promoter-proximal gene regulation4, 5, 6. Here we present X-ray structures at 3.3 Å resolution of an arrested Saccharomyces cerevisiae Pol II complex with DNA and RNA, and of a reactivation intermediate that additionally contains TFIIS. In the arrested complex, eight nucleotides of backtracked RNA bind a conserved ‘backtrack site’ in the Pol II pore and funnel, trapping the active centre trigger loop and inhibiting mRNA elongation. In the reactivation intermediate, TFIIS locks the trigger loop away from backtracked RNA, displaces RNA from the backtrack site, and complements the polymerase active site with a basic and two acidic residues that may catalyse proton transfers during RNA cleavage. The active site is demarcated from the backtrack site by a ‘gating tyrosine’ residue that probably delimits backtracking. These results establish the structural basis of Pol II backtracking, arrest and reactivation, and provide a framework for analysing gene regulation during transcription elongation.

Details

show
hide
Language(s): eng - English
 Dates: 2011-02-232011-03-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/nature09785
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 471 (7337) Sequence Number: - Start / End Page: 249 - 253 Identifier: -