Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Graphene-Based Topological Insulator with an Intrinsic Bulk Band Gap above Room Temperature

Kou, L., Yan, B., Hu, F., Wu, S.-C., Wehling, T. O., Felser, C., et al. (2013). Graphene-Based Topological Insulator with an Intrinsic Bulk Band Gap above Room Temperature. Nano Letters, 13(12), 6251-6255. doi:10.1021/nl4037214.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kou, Liangzhi1, Autor
Yan, Binghai2, Autor           
Hu, Feiming1, Autor
Wu, Shu-Chun3, Autor           
Wehling, Tim O.1, Autor
Felser, Claudia4, Autor           
Chen, Changfeng1, Autor
Frauenheim, Thomas1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863427              
3Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863425              
4Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Topological insulators (TIs) represent a new quantum state of matter characterized by robust gapless states inside the insulating bulk gap. The metallic edge states of a two-dimensional (2D) TI, known as the quantum spin Hall (QSH) effect, are immune to backscattering and carry fully spin-polarized dissipationless currents. However, existing 2D TIs realized in HgTe and InAs/GaSb suffer from small bulk gaps (<10 meV) well below room temperature, thus limiting their application in electronic and spintronic devices. Here, we report a new 2D TI comprising a graphene layer sandwiched between two Bi2Se3 slabs that exhibits a large intrinsic bulk band gap of 30-50 meV, making it viable for room-temperature applications. Distinct from previous strategies for enhancing the intrinsic spin-orbit coupling effect of the graphene lattice, the present graphene-based TI operates on a new mechanism of strong inversion between graphene Dirac bands and Bi2Se3 conduction bands. Strain engineering leads to effective control and substantial enhancement of the bulk gap. Recently reported synthesis of smooth graphene/Bi2Se3 interfaces demonstrates the feasibility of experimental realization of this new 2D TI structure, which holds great promise for nanoscale device applications.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2013-11-08
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000328439200076
DOI: 10.1021/nl4037214
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nano Letters
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 13 (12) Artikelnummer: - Start- / Endseite: 6251 - 6255 Identifikator: ISSN: 1530-6984
CoNE: https://pure.mpg.de/cone/journals/resource/110978984570403