Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Critical behavior in spherical and hyperbolic spaces

Benedetti, D. (2015). Critical behavior in spherical and hyperbolic spaces. Journal of Statistical Mechanics: Theory and Experiment, 2015(1): P01002. doi:10.1088/1742-5468/2015/01/P01002.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0018-C26F-4 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-8D85-6
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1403.6712.pdf (Preprint), 346KB
Name:
1403.6712.pdf
Beschreibung:
File downloaded from arXiv at 2014-04-08 10:03
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
JSM_2015_1_P01002.pdf (beliebiger Volltext), 554KB
Name:
JSM_2015_1_P01002.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Benedetti, Dario1, Autor              
Affiliations:
1Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_67201              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Condensed Matter, Statistical Mechanics, cond-mat.stat-mech,General Relativity and Quantum Cosmology, gr-qc,High Energy Physics - Theory, hep-th
 Zusammenfassung: We study the effects of curved background geometries on the critical behavior of scalar field theory. In particular we concentrate on two maximally symmetric spaces: $d$-dimensional spheres and hyperboloids. In the first part of the paper, by applying the Ginzburg criterion, we find that for large correlation length the Gaussian approximation is valid on the hyperboloid for any dimension $d\geq 2$, while it is not trustable on the sphere for any dimension. This is understood in terms of various notions of effective dimension, such as the spectral and Hausdorff dimension. In the second part of the paper, we apply functional renormalization group methods to develop a different perspective on such phenomena, and to deduce them from a renormalization group analysis. By making use of the local potential approximation, we discuss the consequences of having a fixed scale in the renormalization group equations. In particular, we show that in the case of spheres there is no true phase transition, as symmetry restoration always occurs at large scales. In the case of hyperboloids, the phase transition is still present, but as the only true fixed point is the Gaussian one, mean field exponents are valid also in dimensions lower than four.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014-03-262015
 Publikationsstatus: Im Druck publiziert
 Seiten: 24 pages, 3 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1403.6712
DOI: 10.1088/1742-5468/2015/01/P01002
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Statistical Mechanics: Theory and Experiment
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol, England : Institute of Physics Publishing
Seiten: - Band / Heft: 2015 (1) Artikelnummer: P01002 Start- / Endseite: - Identifikator: ISSN: 1742-5468
CoNE: /journals/resource/111076098244006