ausblenden:
Schlagwörter:
spatial navigation
hippocampus
striatum
aging
kibra
hippocampal place cells
caudate-nucleus lesions
medial temporal-lobe
age-differences
water maze
geometric determinants
val66met polymorphism
entorhinal cortex
episodic memory
sex-differences
Zusammenfassung:
Spatial navigation relies on multiple mnemonic mechanisms and previous work in younger adults has described two separate types of spatial memory. One type uses directional as well as boundary-related information for spatial memory and mainly implicates the hippocampal formation. The other type has been linked to directional and landmark-related information and primarily involves the striatum. Using a virtual reality navigation paradigm, we studied the impacts of aging and a single nucleotide polymorphism (SNP rs17070145) of the KIBRA gene (official name: WWC1) on these memory forms. Our data showed that older adult's spatial learning was preferentially related to processing of landmark information, whereas processing of boundary information played a more prominent role in younger adults. Moreover, among older adults T-allele carriers of the examined KIBRA polymorphism showed better spatial learning compared to C homozygotes. Together these findings provide the first evidence for an effect of the KIBRA rs17070145 polymorphism on spatial memory in humans and age differences in the reliance on landmark and boundary-related spatial information. (c) 2013 Wiley Periodicals, Inc.