English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit

Burnashev, N., Monyer, H., Seeburg, P. H., & Sakmann, B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron, 8(1), 189-198. doi:10.1016/0896-6273(92)90120-3.

Item is

Files

show Files
hide Files
:
Neuron_8_1992_189.pdf (Any fulltext), 3MB
 
File Permalink:
-
Name:
Neuron_8_1992_189.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

show
hide
 Creators:
Burnashev, Nail1, Author           
Monyer, Hannah2, Author           
Seeburg, Peter H.2, Author           
Sakmann, Bert1, Author           
Affiliations:
1Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497701              
2Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497704              

Content

show
hide
Free keywords: -
 Abstract: Functionally diverse GluR channels of the AMPA subtype are generated by the assembly of GluR-A, -B, -C, and -D subunits into homo- and heteromeric channels. The GluR-B subunit is dominant in determining functional properties of heteromeric AMPA receptors. This subunit exists in developmentally distinct edited and unedited forms, GluR-B(R) and GluR-B(Q), which differ in a single amino acid in transmembrane segment TM2 (Q/R site). Homomeric GluR-B(R) channels expressed in 293 cells display a low divalent permeability, whereas homomeric GluR-B(Q) and GluR-D channels exhibit a high divalent permeability. Mutational analysis revealed that both the positive charge and the size of the amino acid side chain located at the Q/R site control the divalent permeability of homomeric channels. Coexpression of Q/R site arginine- and glutamine-containing subunits generates cells with varying divalent permeabilities depending on the amounts of expression vectors used for cell transfection. Intermediate divalent permeabilities were traced to the presence of both divalent permeant homomeric and impermeant heteromeric channels. It is suggested that the positive charge contributed by the arginine of the edited GluR-B(R) subunit determines low divalent permeability in heteromeric GluR channels and that changes in GluR-B(R) expression regulate the AMPA receptor-dependent divalent permeability of a cell.

Details

show
hide
Language(s): eng - English
 Dates: 1991-09-301992-01-01
 Publication Status: Issued
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Neuron
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, Mass. : Cell Press
Pages: - Volume / Issue: 8 (1) Sequence Number: - Start / End Page: 189 - 198 Identifier: ISSN: 0896-6273
CoNE: https://pure.mpg.de/cone/journals/resource/954925560565