English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Complexes of yeast adenylate kinase and nucleotides investigated by 1H NMR

Vetter, I. R., Konrad, M., & Rösch, P. (1991). Complexes of yeast adenylate kinase and nucleotides investigated by 1H NMR. Biochemistry, 30(17), 4137-4142. doi:10.1021/bi00231a005.

Item is

Files

show Files
hide Files
:
Biochem_30_1991_4137.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
Biochem_30_1991_4137.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Locator:
https://doi.org/10.1021/bi00231a005 (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Vetter, Ingrid R., Author
Konrad, Manfred, Author
Rösch, Paul1, Author           
Affiliations:
1Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_1497712              

Content

show
hide
Free keywords: -
 Abstract: The role of one of the histidine residues present in many adenylate kinases (H36 in the porcine cytosolic enzyme) is highly disputed. We thus studied the yeast enzyme (AKye) containing this His residue. AKye is highly homologous to the Escherichia coli enzyme (AKec), a protein that is already well characterized by NMR [Vetter et al. (1990) Biochemistry 29, 7459-7467] and does not contain the His residue in question. In addition, discrepancies between solution structural and X-ray crystallographic studies on the location of the nucleotide binding sites of adenylate kinases are clarified. One- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was used to investigate AKye and its complex with the bisubstrate analogue P1,P5-bis(5'-adenosyl)pentaphosphate (AP5A). The well-resolved spectra of AKye allowed identification of nearly all detectable resonances originating from aromatic side chain protons (12 out of 15 spin systems). From these studies, all aromatic residues of AKec involved in the binding of ATP.Mg2+ have functional analogues in AKye. The AMP site seems to make no contacts to aromatic side chains, neither in the AKye.AP5A.Mg2+ nor in the AKec.AP5A.Mg2+ complexes, so that it is presently not possible to localize this binding site by NMR. The ATP site of AKye is located near residues W210 and H143 in a position similar to the ATP site of the E. coli enzyme. In combination with the recent X-ray results on the AP5A complexes AKye and AKec and the GMP complex of guanylate kinase [Stehle, T., & Schultz, G. E. (1990) J. Mol. Biol. 221, 255-269], the latter one leading to the definition of the monophosphate site, the problem of the location of the nucleotide sites can be considered to be solved in a way contradicting earlier work [for a review, see Mildvan, A. S. (1989) FASEB J. 3, 1705-1714] and denying the His residue homologous to H36 in porcine adenylate kinase a direct role in substrate binding.

Details

show
hide
Language(s): eng - English
 Dates: 1991-05-291990-11-161991-04
 Publication Status: Issued
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biochemistry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Columbus, Ohio : American Chemical Society
Pages: - Volume / Issue: 30 (17) Sequence Number: - Start / End Page: 4137 - 4142 Identifier: ISSN: 0006-2960
CoNE: https://pure.mpg.de/cone/journals/resource/954925384103