English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch

Oberlaender, M., Boudewijns, Z. S., Kleele, T., Mansvelder, H. D., Sakmann, B., & de Kock, C. P. (2011). Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proceedings of the National Academy of Sciences of the United States of America, 108(Mar 8 2011), 4188-4193. doi:10.1073/pnas.1100647108.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title :

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Oberlaender, M.1, Author
Boudewijns, Z. S., Author
Kleele, T., Author
Mansvelder, H. D., Author
Sakmann, B.1, Author
de Kock, C. P., Author
Affiliations:
1Max Planck Florida Institute for Neuroscience, Max Planck Society, One Max Planck Way, Jupiter FL 33458, USA, ou_1950288              

Content

show
hide
Free keywords: *Axons, Action Potentials, Animals, Cerebral Cortex/cytology/*physiology, Neurons/*cytology, Rats, Rats, Wistar
 Abstract: The cortical output layer 5 contains two excitatory cell types, slender- and thick-tufted neurons. In rat vibrissal cortex, slender-tufted neurons carry motion and phase information during active whisking, but remain inactive after passive whisker touch. In contrast, thick-tufted neurons reliably increase spiking preferably after passive touch. By reconstructing the 3D patterns of intracortical axon projections from individual slender- and thick-tufted neurons, filled in vivo with biocytin, we were able to identify cell type-specific intracortical circuits that may encode whisker motion and touch. Individual slender-tufted neurons showed elaborate and dense innervation of supragranular layers of large portions of the vibrissal area (total length, 86.8 +/- 5.5 mm). During active whisking, these long-range projections may modulate and phase-lock the membrane potential of dendrites in layers 2 and 3 to the whisking cycle. Thick-tufted neurons with soma locations intermingling with those of slender-tufted ones display less dense intracortical axon projections (total length, 31.6 +/- 14.3 mm) that are primarily confined to infragranular layers. Based on anatomical reconstructions and previous measurements of spiking, we put forward the hypothesis that thick-tufted neurons in rat vibrissal cortex receive input of whisker motion from slender-tufted neurons onto their apical tuft dendrites and input of whisker touch from thalamic neurons onto their basal dendrites. During tactile-driven behavior, such as object location, near-coincident input from these two pathways may result in increased spiking activity of thick-tufted neurons and thus enhanced signaling to their subcortical targets.

Details

show
hide
Language(s):
 Dates: 2011
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Abbreviation : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: 5 Volume / Issue: 108 (Mar 8 2011) Sequence Number: - Start / End Page: 4188 - 4193 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230