English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Crystal Plasticity Finite Element Simulations of Grain Interaction and Orientation Fragmentation during Plastic Deformation of BCC Metals

Park, S. J., Han, H. N., Oh, K. H., Raabe, D., & Kim, J. K. (2003). Crystal Plasticity Finite Element Simulations of Grain Interaction and Orientation Fragmentation during Plastic Deformation of BCC Metals. Düsseldorf, Germany: MPI für Eisenforschung GmbH.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0019-6BC4-B Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0019-6BC6-7
Genre: Other

Files

show Files
hide Files
:
edoc Raabe crystal plasticity grain fragmentation.pdf (Any fulltext), 411KB
Name:
edoc Raabe crystal plasticity grain fragmentation.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Park, S. J., Author
Han, H. N., Author
Oh, K. H., Author
Raabe, D.1, Author              
Kim, J. K., Author
Affiliations:
1Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Content

show
hide
Free keywords: Grain interaction, Orientation fragmentation, Finite element simulation
 Abstract: Deformation of a grain in polycrystalline metals is restricted or forced by deformation of neighbor grains during plastic deformation processes. It also gives influence to deformation of neighbor grains at the same time. Interaction between grains causes inhomogeneous local deformation and texture during plastic deformation. Prediction of inhomogeneous local deformation and texture is important in understanding of recrystallization texture. Taylor-type polycrystal models which have been employed in prediction of texture evolution cannot count on grain interaction. In this work, a finite element simulation based on the crystal plasticity has been carried out to investigate the effect of grain interaction on local deformation and texture evolution. An artificially configured BCC bicrystal that consists of a crystal located at center and a surrounding neighbor crystal has been employed in plane strain compression simulation. Several pairs of specific orientations have been chosen for initial orientations of the bicrystal. Deformation and texture evolution of the center crystal in the bicrystal have been investigated changing the initial orientation of the surrounding crystal. The simulation results show that deformation and texture evolution near crystal boundary can be different from those at the center region of the crystal. Orientation fragmentation, which results in great lattice curvature is observed in a center grain with an initial metastable orientation. Simulation shows that a metastable crystal always breaks up during deformation and the grain interaction changes only the pattern of grain breakup.

Details

show
hide
Language(s): eng - English
 Dates: 2003
 Publication Status: Published in print
 Pages: -
 Publishing info: Düsseldorf, Germany : MPI für Eisenforschung GmbH
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 59844
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show