Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Recrystallization Simulation by Coupling of a Crystal Plasticity FEM with a Cellular Automaton Method

Raabe, D., & Becker, R. C.(2003). Recrystallization Simulation by Coupling of a Crystal Plasticity FEM with a Cellular Automaton Method.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
edoc Raabe Becker report Dec 2003.pdf (beliebiger Volltext), 2MB
Name:
edoc Raabe Becker report Dec 2003.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Raabe, D.1, Autor           
Becker, R. C., Autor
Affiliations:
1Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The report presents an approach for simulating primary static recrystallization which is based on coupling a viscoplastic crystal plasticity finite element model with a probabilistic kinetic cellular automaton. The crystal plasticity finite element model accounts for crystallographic slip and for the rotation of the crystal lattice during plastic deformation. The model uses space and time as independent variables and the crystal orientation and the accumulated slip as dependent variables. The ambiguity in the selection of the active slip systems is avoided by using a viscoplastic formulation which assumes that the slip rate on a slip system is related to the resolved shear stress through a power−law relation. The equations are cast in an updated Lagrangian framework. The model has been implemented as a user subroutine in the commercial finite element code Abaqus. The cellular automaton uses a switching rule which is formulated as a probabilistic analogue of the linearized symmetric Turnbull kinetic equation for the motion of sharp grain boundaries. The actual decision about a switching event is made using a Monte Carlo step. The automaton uses space and time as independent variables and the crystal orientation and a stored energy measure as dependent variables. The kinetics produced by the switching algorithm are scaled through the mesh size, the grain boundary mobility, and the driving force data. Coupling of the two models is realized by: translating the state variables used in the finite element plasticity model into state variables used in the cellular automaton; mapping the finite element integration point locations on the quadratic cellular automaton mesh; using the resulting cell size, maximum driving force and maximum grain boundary mobility occuring in the region for determining the length scale, time step, and local switching probabilities in the automaton; and identifying an appropriate nucleation criterion. The coupling method is applied to the simulation of texture and microstructure evolution in a heterogeneously deformed high purity aluminum polycrystal during static primary recrystallization considering local grain boundary mobilities and driving forces.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2003
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 61288
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Recrystallization Simulation
Veranstaltungsort: MPI für Eisenforschung GmbH, Düsseldorf, Germany
Start-/Enddatum: 2003

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: