English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science

Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., et al. (2014). The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. Journal of Physics: Condensed Matter, 26(21): 213201. doi:10.1088/0953-8984/26/21/213201.

Item is

Files

show Files
hide Files
:
ELPA_review.pdf (Any fulltext), 2MB
Name:
ELPA_review.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2014
Copyright Info:
IoP
License:
-

Locators

show

Creators

show
hide
 Creators:
Marek, A.1, Author
Blum, Volker2, 3, Author           
Johanni, R1, 2, Author
Havu, V4, Author
Lang, B5, Author
Auckenthaler, T6, Author
Heinecke, A6, Author
Bungartz, H-J6, Author
Lederer, H.1, Author
Affiliations:
1Computer Center Garching (RZG), Max Planck Institute for Plasma Physics, Max Planck Society, ou_1856297              
2Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
3Duke University, MEMS Department, Durham, NC 27708, USA, ou_persistent22              
4COMP, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland, ou_persistent22              
5Fachbereich C, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany, ou_persistent22              
6 Fakultät für Informatik, Technische Universität München, D-85748 Garching, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N3) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overcome. In many cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs is needed, so that iterative solution strategies that focus only on a few eigenvalues become ineffective. Likewise, it is not always desirable or practical to circumvent the eigenvalue solution entirely. We here review some current developments regarding dense eigenvalue solvers and then focus on the Eigenvalue soLvers for Petascale Applications (ELPA) library, which facilitates the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for dense matrices that have real-valued and complex-valued matrix entries, respectively, on parallel computer platforms. ELPA addresses standard as well as generalized eigenvalue problems, relying on the well documented matrix layout of the Scalable Linear Algebra PACKage (ScaLAPACK) library but replacing all actual parallel solution steps with subroutines of its own. For these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines and proprietary libraries that implement the ScaLAPACK interface (e.g. Intel's MKL). The most time-critical step is the reduction of the matrix to tridiagonal form and the corresponding backtransformation of the eigenvectors. ELPA offers both a one-step tridiagonalization (successive Householder transformations) and a two-step transformation that is more efficient especially towards larger matrices and larger numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-OpenMPI implementation available as well. Scalability beyond 10 000 CPU cores for problem sizes arising in the field of electronic structure theory is demonstrated for current high-performance computer architectures such as Cray or Intel/Infiniband. For a matrix of dimension 260 000, scalability up to 295 000 CPU cores has been shown on BlueGene/P.

Details

show
hide
Language(s): eng - English
 Dates: 2014-01-182014-02-252014-05-022014-05-28
 Publication Status: Issued
 Pages: 15
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1088/0953-8984/26/21/213201
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Physics: Condensed Matter
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bristol, UK : IOP Pub.
Pages: - Volume / Issue: 26 (21) Sequence Number: 213201 Start / End Page: - Identifier: ISSN: 0953-8984
CoNE: https://pure.mpg.de/cone/journals/resource/954928562478