Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data

Maaß, N., Kaleschke, L., Tian-Kunze, X., & Drusch, M. (2013). Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data. The Cryosphere, 7(6), 1971-1989. doi:10.5194/tc-7-1971-2013.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Maaß, Nina1, Autor           
Kaleschke, L.2, Autor           
Tian-Kunze, X.3, Autor
Drusch, M.3, Autor
Affiliations:
1The CliSAP Cluster of Excellence, External Organizations, ou_1832285              
2B 1 - Arctic and Permafrost, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations, ou_1863481              
3external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: COMPLEX-DIELECTRIC-CONSTANT; MICROWAVE-FREQUENCIES; WEDDELL SEA; MODEL; DEPTH; OCEAN; TEMPERATURE; FREEBOARD; PRODUCTS; COVER
 Zusammenfassung: The microwave interferometric radiometer of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a snow layer on top of the ice. Here, we implement a snow layer in our emission model and investigate how snow influences L-band brightness temperatures and whether it is possible to retrieve snow thickness over thick Arctic sea ice from SMOS data. We find that the brightness temperatures above snow-covered sea ice are higher than above bare sea ice and that horizontal polarisation is more affected by the snow layer than vertical polarisation. In accordance with our theoretical investigations, the root mean square deviation between simulated and observed horizontally polarised brightness temperatures decreases from 20.9 K to 4.7 K, when we include the snow layer in the simulations. Although dry snow is almost transparent in L-band, we find brightness temperatures to increase with increasing snow thickness under cold Arctic conditions. The brightness temperatures' dependence on snow thickness can be explained by the thermal insulation of snow and its dependence on the snow layer thickness. This temperature effect allows us to retrieve snow thickness over thick sea ice. For the best simulation scenario and snow thicknesses up to 35 cm, the average snow thickness retrieved from horizontally polarised SMOS brightness temperatures agrees within 0.1 cm with the average snow thickness measured during the IceBridge flight campaign in the Arctic in spring 2012. The corresponding root mean square deviation is 5.5 cm, and the coefficient of determination is r(2) = 0.58.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000330830300002
DOI: 10.5194/tc-7-1971-2013
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Cryosphere
  Kurztitel : TC
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Copernicus Publications
Seiten: - Band / Heft: 7 (6) Artikelnummer: - Start- / Endseite: 1971 - 1989 Identifikator: Anderer: 1994-0424
Anderer: 1994-0416
CoNE: https://pure.mpg.de/cone/journals/resource/1994-0416