English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems

Lucarini, V., Faranda, D., Wouters, J., & Kuna, T. (2014). Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems. JOURNAL OF STATISTICAL PHYSICS, 154(3), 723-750. doi:10.1007/s10955-013-0914-6.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lucarini, Valerio1, Author           
Faranda, Davide, Author           
Wouters, Jeroen2, Author
Kuna, Tobias2, Author
Affiliations:
1A 1 - Climate Variability and Predictability, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations, ou_1863478              
2external, ou_persistent22              

Content

show
hide
Free keywords: HITTING TIME STATISTICS; LINEAR-RESPONSE; MODEL; PRECIPITATION; EQUILIBRIUM; TEMPERATURE; ATTRACTORS; MECHANICS; MAXIMA; RETURNExtreme value theory; Chaotic systems; Axiom A; Response theory; Kaplan-Yorke dimension; Henon map;
 Abstract: In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

Details

show
hide
Language(s): eng - English
 Dates: 2014-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000331104400006
DOI: 10.1007/s10955-013-0914-6
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: JOURNAL OF STATISTICAL PHYSICS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 154 (3) Sequence Number: - Start / End Page: 723 - 750 Identifier: ISSN: 0022-4715