English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments

Hasson, S., Lucarini, V., & Pascale, S. (2013). Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth System Dynamics, 4(2), 199-217. doi:10.5194/esd-4-199-2013.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hasson, Shabeh, Author
Lucarini, Valerio1, 2, Author           
Pascale, S., Author
Affiliations:
1A 1 - Climate Variability and Predictability, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations, ou_1863478              
2C 2 - Climate Change, Predictions, and Economy, Research Area C: Climate Change and Social Dynamics, The CliSAP Cluster of Excellence, External Organizations, Bundesstraße 53, 20146 Hamburg, DE, ou_1863488              

Content

show
hide
Free keywords: INDIAN-SUMMER MONSOON; CLIMATE-CHANGE; NORTHERN-HEMISPHERE; WATER-RESOURCES; INDUS BASIN; MODEL; PRECIPITATION; TRENDS; VARIABILITY; DISCHARGE
 Abstract: We investigate how the climate models contributing to the PCMDI/CMIP3 dataset describe the hydrological cycle over four major South and Southeast Asian river basins (Indus, Ganges, Brahmaputra and Mekong) for the 20th, 21st (13 models) and 22nd (10 models) centuries. For the 20th century, some models do not seem to conserve water at the river basin scale up to a good degree of approximation. The simulated precipitation minus evaporation (P - E), total runoff (R) and precipitation (P) quantities are neither consistent with the observations nor among the models themselves. Most of the models underestimate P - E for all four river basins, which is mainly associated with the underestimation of precipitation. This is in agreement with the recent results on the biases of the representation of monsoonal dynamics by GCMs. Overall, a modest inter-model agreement is found only for the evaporation and inter-annual variability of P - E. For the 21st and 22nd centuries, models agree on the negative (positive) changes of P - E for the Indus basin (Ganges, Brahmaputra and Mekong basins). Most of the models foresee an increase in the inter-annual variability of P - E for the Ganges and Mekong basins, thus suggesting an increase in large low-frequency dry/wet events. Instead, no considerable future change in the inter-annual variability of P - E is found for the Indus and Brahmaputra basins.

Details

show
hide
Language(s): eng - English
 Dates: 2013
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000328767200002
DOI: 10.5194/esd-4-199-2013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth System Dynamics
  Other : Earth Syst. Dyn.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Copernicus GmbH
Pages: - Volume / Issue: 4 (2) Sequence Number: - Start / End Page: 199 - 217 Identifier: Other: 2190-4979
CoNE: https://pure.mpg.de/cone/journals/resource/2190-4979