Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces

Liu, W., Tkatchenko, A., & Scheffler, M. (2014). Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces. Accounts of Chemical Research, 47(11), 3369-3377. doi:10.1021/ar500118y.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
ACR2013.pdf (beliebiger Volltext), 9MB
 
Datei-Permalink:
-
Name:
ACR2013.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
2014
Copyright Info:
ACS
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liu, Wei1, Autor           
Tkatchenko, Alexandre1, Autor           
Scheffler, Matthias1, Autor           
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, densityfunctional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-ofthe- art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic response effects enables reliable modeling of structure and stability for a broad class of organic molecules adsorbed on metal surfaces. This method was demonstrated to achieve quantitative accuracy for aromatic hydrocarbons (benzene, naphthalene, anthracene, and diindenoperylene), C60, and sulfur/oxygen-containing molecules (thiophene, NTCDA, and PTCDA) on close-packed and stepped metal surfaces, leading to an overall accuracy of 0.1 Å in adsorption heights and 0.1 eV in binding energies with respect to state-of-the-art experiments. An unexpected finding is that vdW interactions contribute more to the binding of strongly bound molecules on transition-metal surfaces than for molecules physisorbed on coinage metals. The accurate inclusion of vdW interactions also significantly improves tilting angles and adsorption heights for all the studied molecules, and can qualitatively change the potential-energy surface for adsorbed molecules with flexible functional groups. Activation barriers for molecular switches and reaction precursors are modified as well.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-03-122014-06-102014-11-18
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/ar500118y
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : VDW-CMAT - Van der Waals Interactions in Complex Materials
Grant ID : 278205
Förderprogramm : Funding Programme 7 (FP7)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Accounts of Chemical Research
  Andere : Acc. Chem. Res.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Easton, Pa. : American Chemical Society
Seiten: - Band / Heft: 47 (11) Artikelnummer: - Start- / Endseite: 3369 - 3377 Identifikator: ISSN: 0001-4842
CoNE: https://pure.mpg.de/cone/journals/resource/954925373792