English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The Changing Length of the Warming Period of the Annual Temperature Cycle in the High Latitudes Under Global Warming

Bye, J., Fraedrich, K. F., Schubert, S., & Zhu, X. (2013). The Changing Length of the Warming Period of the Annual Temperature Cycle in the High Latitudes Under Global Warming. Atmosphere-Ocean, 51, 309-318. doi:10.1080/07055900.2013.793594.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bye, John1, Author
Fraedrich, Klaus F.1, Author           
Schubert, Silke2, Author           
Zhu, Xiuhua2, Author           
Affiliations:
1external, ou_persistent22              
2I 2 - Integrated Modeling Activities, Integrated Activities, The CliSAP Cluster of Excellence, External Organizations, Bundesstraße 53, 20146 Hamburg, DE, ou_1863493              

Content

show
hide
Free keywords: SURFACE-TEMPERATURE; SEMIANNUAL OSCILLATION; NORTH-ATLANTIC; CLIMATE-CHANGE; VARIABILITY; EUROPEwarming period definition; spring; global ERA40 climate data and ECHAM5 climate predictions; Canada; polar regions;
 Abstract: The mechanism of climate change involves not only an increase in surface temperature but also an adjustment of the global seasons through changes in the timing of the annual temperature cycle. By locating the temperature extrema in monthly temperature records using Lagrangian interpolation in regions where a single maximum and minimum occurs, we define the warming period as the interval between the dates of the temperature minimum and the temperature maximum. The length and mid-point of the warming period are objective measures which can be computed from reanalysis data and from climate model predictions. We have used the 40-year reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ERA40) and the European Centre Hamburg Model (ECHAM5) simulations to investigate the global distribution of the length and mid-point of the warming period for the present climate (1958-2001) and under global warming (Intergovernmental Panel on Climate Change, Fourth Assessment Report, Special Report on Emissions Scenarios; IPCC AR4 SRES A1B scenario) for the period 2157-2200.
The results show that the warming period is remarkably uniform in the extratropical temperate latitudes, where it is about 22 days shorter than the cooling period in the ocean and of similar length on land. In the polar region, sharp geographical differences in the length and mid-point of the warming period occur over the ocean and over land which we attribute to the presence of sea ice. Under global warming, these differences are eroded and the temperate regime is extended poleward by about 10 degrees in both hemispheres. This regime change is of particular importance to Canada, on which the discussion on global warming in high latitudes is focused.

Details

show
hide
Language(s): eng - English
 Dates: 2013
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmosphere-Ocean
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: BOX 3211, STATION D, OTTAWA, ON K1P 6H7, CANADA : CMOS-SCMO
Pages: - Volume / Issue: 51 Sequence Number: - Start / End Page: 309 - 318 Identifier: ISSN: 0705-5900