English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

Boysen, L., Brovkin, V., Arora, V. K., Cadule, P., de Noblet-Ducoudré, N., Kato, E., et al. (2014). Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth System Dynamics, 5, 309-319. doi:10.5194/esd-5-309-2014.

Item is

Files

show Files
hide Files
:
esd-5-309-2014.pdf (Publisher version), 2MB
Name:
esd-5-309-2014.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
esd-5-309-2014-supplement.pdf (Supplementary material), 634KB
Name:
esd-5-309-2014-supplement.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Boysen, Lena1, Author           
Brovkin, Victor1, 2, Author                 
Arora, V. K., Author
Cadule, P., Author
de Noblet-Ducoudré, N., Author
Kato, E., Author
Pongratz, Julia3, Author                 
Gayler, Veronika1, Author                 
Affiliations:
1Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913566              
2B 2 - Land Use and Land Cover Change, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations, Bundesstraße 53, 20146 Hamburg, DE, ou_1863482              
3Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_1832286              

Content

show
hide
Free keywords: -
 Abstract: Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006–2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between −0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC.

Details

show
hide
Language(s): eng - English
 Dates: 2014201420142014
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/esd-5-309-2014
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth System Dynamics
  Other : Earth Syst. Dyn.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Copernicus GmbH
Pages: - Volume / Issue: 5 Sequence Number: - Start / End Page: 309 - 319 Identifier: Other: 2190-4979
CoNE: https://pure.mpg.de/cone/journals/resource/2190-4979