Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Numerical and experimental evaluation of RF shimming in the human brain at 9.4 T using a dual-row transmit array

Hoffmann, J., Shajan, G., Scheffler, K., & Pohmann, R. (2014). Numerical and experimental evaluation of RF shimming in the human brain at 9.4 T using a dual-row transmit array. Magnetic Resonance Materials in Physics, Biology and Medicine, 27(5), 373-386. doi:10.1007/s10334-013-0419-y.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Hoffmann, J1, 2, Autor           
Shajan, G1, 2, Autor           
Scheffler, K1, 2, Autor           
Pohmann, R1, 2, Autor           
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Objective To provide a numerical and experimental investigation of the static RF shimming capabilities in the human brain at 9.4 T using a dual-row transmit array. Materials and methods A detailed numerical model of an existing 16-channel, inductively decoupled dual-row array was constructed using time-domain software together with circuit co-simulation. Experiments were conducted on a 9.4 T scanner. Investigation of RF shimming focused on B1 + homogeneity, efficiency and local specific absorption rate (SAR) when applied to large brain volumes and on a slice-by-slice basis. Results Numerical results were consistent with experiments regarding component values, S-parameters and B1 + pattern, though the B1 + field was about 25 weaker in measurements than simulations. Global shim settings were able to prevent B1 + field voids across the entire brain but the capability to simultaneously reduce inhomogeneities was limited. On a slice-by-slice basis, B1 + standard deviations of below 10 without field dropouts could be achieved in axial, sagittal and coronal orientations across the brain, even with phase-only shimming, but decreased B1 + efficiency and SAR limitations must be considered. Conclusion Dual-row transmit arrays facilitate flexible 3D RF management across the entire brain at 9.4 T in order to trade off B1 + homogeneity against power-efficiency and local SAR.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2013-112014-10
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1007/s10334-013-0419-y
BibTex Citekey: HoffmannSSP2013_3
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Magnetic Resonance Materials in Physics, Biology and Medicine
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 27 (5) Artikelnummer: - Start- / Endseite: 373 - 386 Identifikator: -