English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Theory of nonlinear phononics for coherent light control of solids

Subedi, A., Cavalleri, A., & Georges, A. (2014). Theory of nonlinear phononics for coherent light control of solids. Physical Review B, 89(22): 220301(R). doi:10.1103/PhysRevB.89.220301.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-001A-3370-6 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-2D8F-8
Genre: Journal Article

Files

show Files
hide Files
:
PhysRevB.89.220301.pdf (Publisher version), 954KB
Name:
PhysRevB.89.220301.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2014
Copyright Info:
© American Physical Society
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1103/PhysRevB.89.220301 (Publisher version)
Description:
-
Locator:
http://arxiv.org/abs/1311.0544 (Preprint)
Description:
-

Creators

show
hide
 Creators:
Subedi, Alaska1, Author
Cavalleri, Andrea2, 3, Author              
Georges, Antoine1, 4, 5, Author
Affiliations:
1Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau Cedex, France, ou_persistent22              
2Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, Luruper Chaussee 149, Geb. 99 (CFEL), 22761 Hamburg, DE, ou_1938293              
3Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford, United Kingdom, ou_persistent22              
4Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France, ou_persistent22              
5DPMC-MaNEP, Université de Genève, CH-1211 Genève, Switzerland, ou_persistent22              

Content

show
hide
Free keywords: PACS numbers: 78.47.J−, 63.20.Ry, 71.15.Mb, 71.30.+h
 Abstract: We present a microscopic theory for ultrafast control of solids with high-intensity terahertz frequency optical pulses. When resonant with selected infrared-active vibrations, these pulses transiently modify the crystal structure and lead to new collective electronic properties. The theory predicts the dynamical path taken by the crystal lattice using first-principles calculations of the energy surface and classical equations of motion, as well as symmetry considerations. Two classes of dynamics are identified. In the perturbative regime, displacements along the normal mode coordinate of symmetry-preserving Raman active modes can be achieved by cubic anharmonicities. This explains the light-induced insulator-to-metal transition reported experimentally in manganites. We predict a regime in which ultrafast instabilities that break crystal symmetry can be induced. This nonperturbative effect involves a quartic anharmonic coupling and occurs above a critical threshold, below which the nonlinear dynamics of the driven mode displays softening and dynamical stabilization.

Details

show
hide
Language(s): eng - English
 Dates: 2014-04-022013-11-032014-06-112014-06-01
 Publication Status: Published in print
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1103/PhysRevB.89.220301
BibTex Citekey: PhysRevB.89.220301
arXiv: 1311.0544
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, NY : American Physical Society
Pages: - Volume / Issue: 89 (22) Sequence Number: 220301(R) Start / End Page: - Identifier: ISSN: 1098-0121
CoNE: /journals/resource/954925225008