Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Comparative study of Si and Ge nanoparticles with exotic core phases for solar energy conversion

Wippermann, S. M., Vörös, M., Gali, A., Galli, G., & Zimanyi, G. T. (2013). Comparative study of Si and Ge nanoparticles with exotic core phases for solar energy conversion. In Institute of Electrical and Electronics Engineers Inc. (Ed.), 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (pp. 0989-0992). IEEE.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wippermann, S. M.1, 2, 3, Autor           
Vörös, M.2, 3, Autor           
Gali, A.4, Autor           
Galli, G.2, 3, Autor           
Zimanyi, G. T.2, Autor           
Affiliations:
1Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863350              
2Physics Department, University of California, Davis, CA 95616, USA, ou_persistent22              
3Chemistry Department, University of California, Davis, Davis CA 95616, USA, ou_persistent22              
4Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Theoretical or Mathematical, Experimental/ electron-hole recombination; elemental semiconductors; excitons; germanium; nanoparticles; silicon; solar cells/ solar energy conversion; 3G photovoltaic cells; Schockley-Quessier limit; solar cell energy conversion; multiple exciton generation; electron-hole pair emission; quantum confinement; solar spectrum; exotic high-pressure phase; absorption; cubic diamond phase; MEG rates; colloidal NP; laser treated surface; exotic nanoparticle systems; solar applications; Si; Ge/ A8630J Photoelectric conversion; solar cells and arrays B8420 Solar cells and arrays/ Si/el; Ge/el;
 Zusammenfassung: Third generation photovoltaic cells promise to overcome the Schockley-Quessier limit of solar cell energy conversion. In the Multiple Exciton Generation (MEG) pathway quantum confined highly energetic electron-hole pairs relax by emitting additional electron-hole pairs. The overall utility of this process is undermined, however, by the very fact that quantum confinement pushes the gap of nanoparticles (NPs) out of the solar spectrum. Here we propose that Si and Ge NPs with core structures made out of exotic high-pressure phases of bulk Si and Ge have lower gaps, more intense absorption and higher MEG rates than those of made out of the cubic diamond phase. Some of these exotic phases have already been proven to exist in colloidal NPs or on laser treated surfaces, therefore, our findings may open the door for promising solar applications of such exotic nanoparticle systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 14116375
DOI: 10.1109/PVSC.2013.6744307
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
Veranstaltungsort: Tampa, FL, USA
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
Genre der Quelle: Konferenzband
 Urheber:
Institute of Electrical and Electronics Engineers Inc., Herausgeber              
Affiliations:
-
Ort, Verlag, Ausgabe: IEEE
Seiten: - Band / Heft: - Artikelnummer: 6744307 Start- / Endseite: 0989 - 0992 Identifikator: ISBN: 978-1-4799-3299-3
ISSN: 01608371