Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Global covariation of carbon turnover times with climate in terrestrial ecosystems

Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., et al. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213-217. doi:10.1038/nature13731.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC2124.pdf (Verlagsversion), 5MB
 
Datei-Permalink:
-
Name:
BGC2124.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Carvalhais, Nuno1, Autor           
Forkel, Matthias1, 2, Autor           
Khomik, Myroslava3, Autor           
Bellarby, Jessica, Autor
Jung, Martin4, Autor           
Migliavacca, Mirco5, Autor           
Mu, Mingquan, Autor
Saatchi, Sassan, Autor
Santoro, Maurizio, Autor
Thurner, Martin1, Autor           
Weber, Ulrich6, Autor           
Ahrens, Bernhard7, Autor           
Beer, Christian8, Autor           
Cescatti, Alessandro, Autor
Randerson, James T., Autor
Reichstein, Markus6, Autor           
Affiliations:
1Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938310              
2IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry , Max Planck Society, Hans-Knöll-Str. 10, 07745 Jena, DE, ou_1497757              
3Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497760              
4Global Diagnostic Modelling, Dr. Martin Jung, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938311              
5Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938307              
6Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1688139              
7Soil Processes, Dr. Marion Schrumpf, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938308              
8Terrestrial Ecosystem Modelling, Dr. Christian Beer, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_2040284              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections1, 2. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type3, 4, 5, 6. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014-07-302014-09-242014-10-09
 Publikationsstatus: Erschienen
 Seiten: 17
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BGC2124
DOI: 10.1038/nature13731
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 514 Artikelnummer: - Start- / Endseite: 213 - 217 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238