English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A lowering effect of reconstructed Holocene changes in sea surface temperatures on the atmospheric CO2 concentration

Brovkin, V., Kim, J.-H., Hofmann, M., & Schneider, R. (2008). A lowering effect of reconstructed Holocene changes in sea surface temperatures on the atmospheric CO2 concentration. Global Biogeochemical Cycles, 22: GB1016. doi:10.1029/2006GB002885.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Brovkin, Victor1, Author                 
Kim, Jung-Hyun1, Author
Hofmann, Matthias1, Author
Schneider, Ralph1, Author
Affiliations:
1external, ou_persistent22              

Content

show
hide
Free keywords: ERA BEGAN THOUSANDS; INTERMEDIATE COMPLEXITY; SOUTHERN-OCEAN; SYSTEM MODEL; CIRCULATION MODEL; ATLANTIC SECTOR; CLIMATE-CHANGE; HIGH-LATITUDE; CARBON-CYCLE; ICE-CORE
 Abstract: One of the mechanisms proposed to explain the roughly 20 ppmv increase in atmospheric CO(2) concentration from the early to late Holocene is a warming of the ocean surface that reduces CO(2) solubility (Indermuhle et al., 1999). Here we show that this hypothesis is not supported by reconstructed changes in sea surface temperatures (SSTs) because of an inhomogeneous distribution of SST changes across the globe during the course of Holocene. While alkenone-based SST reconstructions compiled in the GHOST database (Kim et al., 2004; Kim and Schneider, 2004) suggest a net warming of the surface ocean on a global scale by 0.2 +/- 0.2 degrees C, both data and model results support a significant cooling trend for the North Atlantic during the last 8000 years. In response to the reconstructed cooling of the North Atlantic by 1.1 +/- 0.2 degrees C, a zonally averaged model of oceanic biogeochemistry simulates a drawdown of atmospheric CO2 by 7 +/- 0.8 ppmv, while a reconstructed warming of the Pacific Ocean by 0.6 +/- 0.4 degrees C counterbalances this effect by about 1 ppmv. On a global scale, this model simulates a lowering of atmospheric CO(2) from the Holocene to pre-industrial times by 6 +/- 2 ppmv due to changes in SSTs, while more complex, three-dimensional biogeochemistry model indicates a moderate decrease by 1 ppmv after 300 years of the model integration. Our study suggests that changes in SSTs may have altered atmospheric CO(2) in a direction opposite to the observed trend and that other mechanisms, presumably related to the changes in carbonate chemistry, could be responsible for the CO(2) increase during the Holocene.

Details

show
hide
Language(s): eng - English
 Dates: 20082008
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000253232900001
DOI: 10.1029/2006GB002885
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Global Biogeochemical Cycles
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 22 Sequence Number: GB1016 Start / End Page: - Identifier: ISSN: 0886-6236