English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Systematic biases in parameter estimation of binary black-hole mergers

Littenberg, T. B., Baker, J. G., Buonanno, A., & Kelly, B. J. (2013). Systematic biases in parameter estimation of binary black-hole mergers. Physical Review D, 87(10): 104003. doi:10.1103/PhysRevD.87.104003.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0023-F6E9-3 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-2639-4
Genre: Journal Article

Files

show Files
hide Files
:
1210.0893.pdf (Preprint), 876KB
Name:
1210.0893.pdf
Description:
File downloaded from arXiv at 2014-10-20 14:58
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PhysRevD.87.104003.pdf (Any fulltext), 2MB
Name:
PhysRevD.87.104003.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Littenberg, Tyson B., Author
Baker, John G., Author
Buonanno, A.1, 2, Author              
Kelly, Bernard J., Author
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              
2Maryland Center for Fundamental Physics & Joint Space-Science Center, Department of Physics, University of Maryland , ou_persistent22              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc
 Abstract: Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched-filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratio (SNR). These biases grow to be comparable to the statistical errors at high ground-based-instrument SNRs (SNR=50), but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors, but for astrophysical black hole mass estimates the absolute biases (of at most a few percent) are still fairly small.

Details

show
hide
Language(s):
 Dates: 2012-10-022013
 Publication Status: Published in print
 Pages: 16 Pages, 7 figures
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1210.0893
DOI: 10.1103/PhysRevD.87.104003
URI: http://arxiv.org/abs/1210.0893
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 87 (10) Sequence Number: 104003 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: /journals/resource/111088197762258