English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Rethinking the lower bound on aerosol radiative forcing

Stevens, B. (2015). Rethinking the lower bound on aerosol radiative forcing. Journal of Climate, 28, 4794-4819. doi:10.1175/JCLI-D-14-00656.1.

Item is

Files

show Files
hide Files
:
2015_JClim_Stevens.zip (Supplementary material), 50MB
Name:
2015_JClim_Stevens.zip
Description:
Ergänzendes Material - Daten
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/zip / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
jcli-d-14-00656%2E1.pdf (Publisher version), 2MB
Name:
jcli-d-14-00656%2E1.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
Film bei Latest Thinking
OA-Status:
Not specified

Creators

show
hide
 Creators:
Stevens, Bjorn1, Author                 
Affiliations:
1Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, ou_913570              

Content

show
hide
Free keywords: -
 Abstract: Based on research showing that in the case of a strong aerosol forcing, this forcing establishes itself early in the historical record, a simple model is constructed to explore the implications of a strongly negative aerosol forcing on the early (pre 1950) part of the instrumental record. This model, which contains terms representing both aerosol-radiation and aerosol-cloud interactions well represents the known time history of aerosol radiative forcing, as well as the effect of the natural state on the strength of aerosol forcing. Model parameters, randomly drawn to represent uncertainty in understanding, demonstrates that a forcing more negative than −1.0 W m−2 is implausible, as it implies that none of the approximately 0.3 K temperature rise between 1850 and 1950 can be attributed to northern-hemispheric forcing. The individual terms of the model are interpreted in light of comprehensive modeling, constraints from observations, and physical understanding, to provide further support for the less negative ( −1.0 W m−2 ) lower bound. These findings suggest that aerosol radiative forcing is less negative and more certain than is commonly believed.

Details

show
hide
Language(s): eng - English
 Dates: 2015-022015-032015-052015-06-15
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1175/JCLI-D-14-00656.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Climate
  Other : J. Clim.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Boston, MA : American Meteorological Society
Pages: - Volume / Issue: 28 Sequence Number: - Start / End Page: 4794 - 4819 Identifier: ISSN: 0894-8755
CoNE: https://pure.mpg.de/cone/journals/resource/954925559525