Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A Simple Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Alvarez, V., Bringmann, K., & Ray, S. (2013). A Simple Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations. Retrieved from http://arxiv.org/abs/1312.3188.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1312.3188.pdf (Preprint), 625KB
Name:
arXiv:1312.3188.pdf
Beschreibung:
File downloaded from arXiv at 2014-11-27 11:25
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Alvarez, Victor1, Autor
Bringmann, Karl2, Autor                 
Ray, Saurabh2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Computational Geometry, cs.CG,Computer Science, Data Structures and Algorithms, cs.DS,Mathematics, Combinatorics, math.CO
 Zusammenfassung: Let $P\subset\mathbb{R}^{2}$ be a set of $n$ points. In this paper we show two new algorithms, one to compute the number of triangulations of $P$, and one to compute the number of pseudo-triangulations of $P$. We show that our algorithms run in time $O^{*}(t(P))$ and $O^{*}(pt(P))$ respectively, where $t(P)$ and $pt(P)$ are the largest number of triangulation paths (T-paths) and pseudo-triangulations paths (PT-paths), respectively, that the algorithms encounter during their execution. Moreover, we show that $t(P) = O^{*}(9^{n})$, which is the first non-trivial bound on $t(P)$ to be known. While there already are algorithms that count triangulations in $O^{*}\left(2^n\right)$, and $O^{*}\left(3.1414^{n}\right)$, there are sets of points where the number of T-paths is $O(2^{n})$. In such cases the algorithm herein presented could potentially be faster. Furthermore, it is not clear whether the already-known algorithms can be modified to count pseudo-triangulations so that their running times remain $O^{*}(c^n)$, for some small constant $c\in\mathbb{R}$. Therefore, for counting pseudo-triangulations (and possibly other similar structures) our approach seems better.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-12-112013
 Publikationsstatus: Online veröffentlicht
 Seiten: 38 pages, 48 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1312.3188
URI: http://arxiv.org/abs/1312.3188
BibTex Citekey: alvarez_simplesweep_2013
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: