hide
Free keywords:
Computer Science, Data Structures and Algorithms, cs.DS
Abstract:
We consider the online resource minimization problem in which jobs with hard
deadlines arrive online over time at their release dates. The task is to
determine a feasible schedule on a minimum number of machines. We rigorously
study this problem and derive various algorithms with small constant
competitive ratios for interesting restricted problem variants. As the most
important special case, we consider scheduling jobs with agreeable deadlines.
We provide the first constant ratio competitive algorithm for the
non-preemptive setting, which is of particular interest with regard to the
known strong lower bound of n for the general problem. For the preemptive
setting, we show that the natural algorithm LLF achieves a constant ratio for
agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)).
We also give an O(log n)-competitive algorithm for the general preemptive
problem, which improves upon the known O(p_max/p_min)-competitive algorithm.
Our algorithm maintains a dynamic partition of the job set into loose and tight
jobs and schedules each (temporal) subset individually on separate sets of
machines. The key is a characterization of how the decrease in the relative
laxity of jobs influences the optimum number of machines. To achieve this we
derive a compact expression of the optimum value, which might be of independent
interest. We complement the general algorithmic result by showing lower bounds
that rule out that other known algorithms may yield a similar performance
guarantee.