hide
Free keywords:
cs.SI, Physics, Physics and Society, physics.soc-ph
Abstract:
How can we succinctly describe a million-node graph with a few simple
sentences? How can we measure the "importance" of a set of discovered subgraphs
in a large graph? These are exactly the problems we focus on. Our main ideas
are to construct a "vocabulary" of subgraph-types that often occur in real
graphs (e.g., stars, cliques, chains), and from a set of subgraphs, find the
most succinct description of a graph in terms of this vocabulary. We measure
success in a well-founded way by means of the Minimum Description Length (MDL)
principle: a subgraph is included in the summary if it decreases the total
description length of the graph.
Our contributions are three-fold: (a) formulation: we provide a principled
encoding scheme to choose vocabulary subgraphs; (b) algorithm: we develop
\method, an efficient method to minimize the description cost, and (c)
applicability: we report experimental results on multi-million-edge real
graphs, including Flickr and the Notre Dame web graph.